首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   52篇
  免费   0篇
航空   25篇
航天技术   21篇
航天   6篇
  2021年   1篇
  2020年   1篇
  2018年   2篇
  2016年   5篇
  2014年   2篇
  2011年   3篇
  2010年   3篇
  2009年   2篇
  2008年   9篇
  2007年   2篇
  2006年   6篇
  2004年   2篇
  2003年   2篇
  2001年   2篇
  1999年   5篇
  1989年   4篇
  1980年   1篇
排序方式: 共有52条查询结果,搜索用时 0 毫秒
51.
MAP-PACE (MAgnetic field and Plasma experiment—Plasma energy Angle and Composition Experiment) on SELENE (Kaguya) has completed its ~1.5-year observation of low-energy charged particles around the Moon. MAP-PACE consists of 4 sensors: ESA (Electron Spectrum Analyzer)-S1, ESA-S2, IMA (Ion Mass Analyzer), and IEA (Ion Energy Analyzer). ESA-S1 and S2 measured the distribution function of low-energy electrons in the energy range 6 eV–9 keV and 9 eV–16 keV, respectively. IMA and IEA measured the distribution function of low-energy ions in the energy ranges 7 eV/q–28 keV/q and 7 eV/q–29 keV/q. All the sensors performed quite well as expected from the laboratory experiment carried out before launch. Since each sensor has a hemispherical field of view, two electron sensors and two ion sensors installed on the spacecraft panels opposite each other could cover the full 3-dimensional phase space of low-energy electrons and ions. One of the ion sensors IMA is an energy mass spectrometer. IMA measured mass-specific ion energy spectra that have never before been obtained at a 100 km altitude polar orbit around the Moon. The newly observed data show characteristic ion populations around the Moon. Besides the solar wind, MAP-PACE-IMA found four clearly distinguishable ion populations on the dayside of the Moon: (1) Solar wind protons backscattered at the lunar surface, (2) Solar wind protons reflected by magnetic anomalies on the lunar surface, (3) Reflected/backscattered protons picked-up by the solar wind, and (4) Ions originating from the lunar surface/lunar exosphere.  相似文献   
52.
Spectroscopic observations were performed of the early-type contact binary AW Lac with an image-intensified coude spectrograph of 1.9-m telescope at the Okayama Astrophysical Observatory. A total of twenty-two spectra covering blue region with a dispersion of 16 Amm-1 have been secured on Kodak IIa-O baked plates. In every spectra sharp interstellar CaII H,K lines are clearly seen. The spectral type of AW Lac has been estimated as early B, which substantially confirms the one adopted in the photometric analysis by Jiang et al. (1983) and is diffrent from A0 listed in General Catalogue of Variable Stars (Kholopov et al. 1985). Contrary to the suggestion by the photometric solution of Jiang et al., no definite secondary lines could be separated, though some indications of light contamination due to the secondary component are surely observed. This would imply that the light ratio of the components should be somewhat smaller than that derived by photometric analysis. No emission features appeared either. The measurement of radial velocities of the primary component for the orbital elements was made for twenty spectra by a conventional method. It was difficult to measure the radial velocities because the lines are quite broadened and deformed. Hence the measured values for the radial velocities should be regarded as rather preliminary. The derived spectroscopic elements, combined with the photometric data, give the absolute dimensions of the system for each assumed mass ratio q. For q = 1, being the adopted photometric solution by Jiang et al., we obtain too small value for the primary's mass, comparing with its spectral type. For the mass ratio as small as q = 0.6, we can obtain a reasonable value for the mass of the primary. However, in order to get more definite conclusion the cross-correlation method would be more appropriate for the spectroscopic analysis of this system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号