首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   56篇
  免费   0篇
航空   21篇
航天技术   11篇
航天   24篇
  2022年   1篇
  2021年   1篇
  2019年   2篇
  2018年   3篇
  2017年   2篇
  2015年   1篇
  2014年   4篇
  2013年   3篇
  2012年   3篇
  2011年   4篇
  2010年   1篇
  2008年   3篇
  2007年   4篇
  2006年   3篇
  2005年   2篇
  2004年   1篇
  2003年   3篇
  2002年   3篇
  2000年   1篇
  1998年   1篇
  1996年   2篇
  1994年   2篇
  1985年   1篇
  1984年   2篇
  1982年   1篇
  1979年   1篇
  1971年   1篇
排序方式: 共有56条查询结果,搜索用时 31 毫秒
31.
We discuss our current understanding of the interior structure and thermal evolution of giant planets. This includes the gas giants, such as Jupiter and Saturn, that are primarily composed of hydrogen and helium, as well as the “ice giants,” such as Uranus and Neptune, which are primarily composed of elements heavier than H/He. The effect of different hydrogen equations of state (including new first-principles computations) on Jupiter’s core mass and heavy element distribution is detailed. This variety of the hydrogen equations of state translate into an uncertainty in Jupiter’s core mass of 18M . For Uranus and Neptune we find deep envelope metallicities up to 0.95, perhaps indicating the existence of an eroded core, as also supported by their low luminosity. We discuss the results of simple cooling models of our solar system’s planets, and show that more complex thermal evolution models may be necessary to understand their cooling history. We review how measurements of the masses and radii of the nearly 50 transiting extrasolar giant planets are changing our understanding of giant planets. In particular a fraction of these planets appear to be larger than can be accommodated by standard models of planetary contraction. We review the proposed explanations for the radii of these planets. We also discuss very young giant planets, which are being directly imaged with ground- and space-based telescopes.  相似文献   
32.
The Ionospheric Connection Explorer (ICON) Far Ultraviolet (FUV) imager, ICON FUV, will measure altitude profiles of OI 135.6 nm emissions to infer nighttime ionospheric parameters. Accurate estimation of the ionospheric state requires the development of a comprehensive radiative transfer model from first principles to quantify the effects of physical processes on the production and transport of the 135.6 nm photons in the ionosphere including the mutual neutralization contribution as well as the effect of resonant scattering by atomic oxygen and pure absorption by oxygen molecules. This forward model is then used in conjunction with a constrained optimization algorithm to invert the anticipated ICON FUV line-of-sight integrated measurements. In this paper, we describe the connection between ICON FUV measurements and the nighttime ionosphere, along with the approach to inverting the measured emission profiles to derive the associated O+ profiles from 150–450 km in the nighttime ionosphere that directly reflect the electron density in the F-region of the ionosphere.  相似文献   
33.
Abstract

Events, like objects, can be decomposed into parts. Path, the spatiotemporal trajectory of an object during an event, is the most commonly labeled event feature across the world's languages, provides important social information, and is increasingly central to theories of general event segmentation. However, little is understood about how adults visually segment paths. We apply theories developed for object segmentation to help understand path segmentation. Overall subjects segmented equivalent object shapes and event paths in similar ways following patterns predicted by Singh and Hoffman's (2001) Singh, M. and Hoffman, D. D. 2001. “Parts-based representations of visual shape and implications for visual cognition.”. In From fragments to objects—Segmentation and grouping in vision Edited by: Shipley, T. F. and Kellman, P. J. 401459. New York, NY: Elsevier Science..  [Google Scholar] geometric analysis of object parts. There were two notable differences between object and event segmentation: (1) event parsing occurred at points of negative curvature minima and positive curvature maxima as opposed to simply negative curvature minima; and (2) event parsing was more frequent and variable than object parsing. Implications of these results for event perception and categorization are discussed.  相似文献   
34.
We review new Chandra and HST observations of the core collapsed cluster NGC 6397 as a guide to understanding the compact binary (CB) populations in core collapse globulars. New cataclysmic variables (CVs) and main sequence chromospherically active binaries (ABs) have been identified, enabling a larger sample for comparison of the Lx, Fx/FV and X-ray vs. optical color distributions. Comparison of the numbers of CBs with Lx  1031 erg s−1 in 4 core collapse vs. 12 King model clusters reveals that the specific frequency SX (number of CBs per unit cluster mass) is enhanced in core collapse clusters, even when normalized for their stellar encounter rate. Although core collapse is halted by the dynamical heating due to stellar (and binary) interaction with CBs in the core, we conclude that production of the hardest CBs – especially CVs – is enhanced during core collapse. NGC 6397 has its most luminous CVs nearest the cluster center, with two newly discovered very low luminosity (old, quiescent) CVs far from the core. The active binaries as well as neutron star systems (MSP and qLMXB) surround the central core. The overall CB population appears to be asymmetric about the cluster center, as in several other core collapse clusters observed with Chandra, suggesting still poorly understood scattering processes.  相似文献   
35.
对于美国联邦航空局(FAA)来说,空中交通管制员的新旧补充享有很高的优先权。当财政预算紧缩的时候,空中交通管理系统负责提高训练标准并且招聘更多的年轻人加入空中交通管制队伍中。  相似文献   
36.
Space Science Reviews - Part of the InSight mission, the SEIS instrument (Seismic Experiment for Interior Structures), is planned to arrive on Mars in November 2018. In order to prepare its future...  相似文献   
37.
Current geophysical knowledge of the planet Mercury is based upon observations from ground-based astronomy and flybys of the Mariner 10 spacecraft, along with theoretical and computational studies. Mercury has the highest uncompressed density of the terrestrial planets and by implication has a metallic core with a radius approximately 75% of the planetary radius. Mercury’s spin rate is stably locked at 1.5 times the orbital mean motion. Capture into this state is the natural result of tidal evolution if this is the only dissipative process affecting the spin, but the capture probability is enhanced if Mercury’s core were molten at the time of capture. The discovery of Mercury’s magnetic field by Mariner 10 suggests the possibility that the core is partially molten to the present, a result that is surprising given the planet’s size and a surface crater density indicative of early cessation of significant volcanic activity. A present-day liquid outer core within Mercury would require either a core sulfur content of at least several weight percent or an unusual history of heat loss from the planet’s core and silicate fraction. A crustal remanent contribution to Mercury’s observed magnetic field cannot be ruled out on the basis of current knowledge. Measurements from the MESSENGER orbiter, in combination with continued ground-based observations, hold the promise of setting on a firmer basis our understanding of the structure and evolution of Mercury’s interior and the relationship of that evolution to the planet’s geological history.  相似文献   
38.
The Michelson Interferometer for Global High-resolution Thermospheric Imaging (MIGHTI) instrument was built for launch and operation on the NASA Ionospheric Connection Explorer (ICON) mission. The instrument was designed to measure thermospheric horizontal wind velocity profiles and thermospheric temperature in altitude regions between 90 km and 300 km, during day and night. For the wind measurements it uses two perpendicular fields of view pointed at the Earth’s limb, observing the Doppler shift of the atomic oxygen red and green lines at 630.0 nm and 557.7 nm wavelength. The wavelength shift is measured using field-widened, temperature compensated Doppler Asymmetric Spatial Heterodyne (DASH) spectrometers, employing low order échelle gratings operating at two different orders for the different atmospheric lines. The temperature measurement is accomplished by a multichannel photometric measurement of the spectral shape of the molecular oxygen A-band around 762 nm wavelength. For each field of view, the signals of the two oxygen lines and the A-band are detected on different regions of a single, cooled, frame transfer charge coupled device (CCD) detector. On-board calibration sources are used to periodically quantify thermal drifts, simultaneously with observing the atmosphere. The MIGHTI requirements, the resulting instrument design and the calibration are described.  相似文献   
39.
The Local Interstellar Cloud (LIC) surrounds the Solar System and sets the boundary conditions for the heliosphere. Using both in situ and absorption line data towards ε CMa we are able to constrain both the ionization and the gas phase abundances of the LIC gas at the Solar Location. We find that the abundances are consistent with all of the carbonaceous dust grains having been destroyed, and in fact with a supersolar abundance of C. The constituents of silicate grains, Si, Mg, and Fe, appear to be sub-solar, indicating that silicate dust is present in the LIC. N, O and S are close to the solar values.  相似文献   
40.
The James Webb Space Telescope   总被引:4,自引:0,他引:4  
The James Webb Space Telescope (JWST) is a large (6.6 m), cold (<50 K), infrared (IR)-optimized space observatory that will be launched early in the next decade into orbit around the second Earth–Sun Lagrange point. The observatory will have four instruments: a near-IR camera, a near-IR multiobject spectrograph, and a tunable filter imager will cover the wavelength range, 0.6 < ; < 5.0 μ m, while the mid-IR instrument will do both imaging and spectroscopy from 5.0 < ; < 29 μ m.The JWST science goals are divided into four themes. The key objective of The End of the Dark Ages: First Light and Reionization theme is to identify the first luminous sources to form and to determine the ionization history of the early universe. The key objective of The Assembly of Galaxies theme is to determine how galaxies and the dark matter, gas, stars, metals, morphological structures, and active nuclei within them evolved from the epoch of reionization to the present day. The key objective of The Birth of Stars and Protoplanetary Systems theme is to unravel the birth and early evolution of stars, from infall on to dust-enshrouded protostars to the genesis of planetary systems. The key objective of the Planetary Systems and the Origins of Life theme is to determine the physical and chemical properties of planetary systems including our own, and investigate the potential for the origins of life in those systems. Within these themes and objectives, we have derived representative astronomical observations.To enable these observations, JWST consists of a telescope, an instrument package, a spacecraft, and a sunshield. The telescope consists of 18 beryllium segments, some of which are deployed. The segments will be brought into optical alignment on-orbit through a process of periodic wavefront sensing and control. The instrument package contains the four science instruments and a fine guidance sensor. The spacecraft provides pointing, orbit maintenance, and communications. The sunshield provides passive thermal control. The JWST operations plan is based on that used for previous space observatories, and the majority of JWST observing time will be allocated to the international astronomical community through annual peer-reviewed proposal opportunities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号