首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   263篇
  免费   2篇
  国内免费   2篇
航空   106篇
航天技术   59篇
航天   102篇
  2021年   4篇
  2020年   2篇
  2019年   1篇
  2018年   10篇
  2017年   5篇
  2015年   5篇
  2014年   10篇
  2013年   18篇
  2012年   14篇
  2011年   30篇
  2010年   14篇
  2009年   17篇
  2008年   19篇
  2007年   12篇
  2006年   9篇
  2005年   16篇
  2004年   8篇
  2003年   12篇
  2002年   6篇
  2001年   5篇
  2000年   2篇
  1999年   3篇
  1998年   2篇
  1997年   3篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1992年   4篇
  1991年   2篇
  1989年   1篇
  1988年   3篇
  1987年   3篇
  1986年   5篇
  1985年   5篇
  1983年   3篇
  1981年   1篇
  1980年   3篇
  1979年   1篇
  1978年   1篇
  1975年   1篇
  1973年   2篇
  1963年   1篇
排序方式: 共有267条查询结果,搜索用时 31 毫秒
191.
Christianity, Judaism and Islam share certain preconceptions, among them an adherence to the idea of man created in the image of God. This article examines the responses of religious experts in these religions to the possibility of contact with ETI. Responses from religious experts of varying branches in all three of these religions suggest that even within a given religion a number of paradigms could emerge in response to possible ETI contact. Some of the factors that might affect responses within each religion are examined.  相似文献   
192.
A Double layer (DL) in a current carrying plasma sustains a localised net potential difference and acts as an impedance converting electrical energy to directed particle energy determined by the DL potential. DL's accelerate equal numbers of ions and electrons for relativistic energies, otherwise electron energisation predominates. Their time independent structure may be described as a BGK (Bernstein-Greene-Kruskal) state analogous to that for laminar shocks, and certain existence criteria must be satisfied. The generalised Langmuir criterion requires total particle pressure balance over the DL and may imply propagation in the plasma reference frame. The Bohm criteria require sufficiently large current densities and are closely related to the local stability condition at the edges of the DL. The DL potential must be sustained externally, for example by the release of stored magnetic energy. A steady state is also possible where (externally maintained) mass motions drive a dynamo region connected by currents to the DL which acts as an electrical load.  相似文献   
193.
194.
The speed and mass dependence of meteor air plasma temperatures is perhaps the most important data needed to understand how small meteoroids chemically change the ambient atmosphere in their path and enrich the ablated meteoric organic matter with oxygen. Such chemistry can play an important role in creating prebiotic compounds. The excitation conditions in various air plasma emissions were measured from high-resolution optical spectra of Leonid storm meteors during NASA's Leonid Multi-Instrument Aircraft Campaign. This was the first time a sufficient number and range of temperature measurements were obtained to search for meteoroid mass and speed dependencies. We found slight increases in temperature with decreasing altitude, but otherwise nearly constant values for meteoroids with speeds between 35 and 72 km/s and masses between 10(-5) g and 1 g. We conclude that faster and more massive meteoroids produce a larger emission volume, but not a higher air plasma temperature. We speculate that the meteoric plasma may be in multiphase equilibrium with the ambient atmosphere, which could mean lower plasma temperatures in a CO(2)-rich early Earth atmosphere.  相似文献   
195.
With ongoing progress in space technology, questions of its potential for the modification of weather and climate phenomena (often summarized by the term ‘geoengineering’) ranging from small-scale severe weather events to mitigation of effects caused by global climate change and ozone depletion have become popular. This paper reviews the current state of scientifically based studies in this context and attempts to provide a basis for an assessment of geoengineering efforts with respect to technological, economic and fundamental scientific aspects. The overview indicates that the current state of knowledge about climate variability as a consequence of natural and anthropogenic influences is sufficient to classify geoengineering solutions as highly risky and their consequences as extremely difficult to predict. Even on smaller scales and with less complexity of interacting processes, only very limited boundary conditions, i.e. a narrow range of atmospheric variability and land surface topography favouring the intended alteration, seem to justify weather modification. Moreover, as for systems reaching scales of large organized storms and hurricanes, required energy and control resources are well beyond existing capabilities. Consequently, the use of space technology for provision of better information on environmental change and integration of remote sensing data into weather and climate models forecasts is supported.  相似文献   
196.
197.
The boundary conditions for a non-destructive sample acquisition system are outlined and the development of a new robotic sampling system suited for use on a cometary surface is briefly discussed. Additionally we present some new results on strength and deformation behaviour of synthetic cometary analogue material.  相似文献   
198.
If the path of the neutral line on the coronal source surface is expressible as a singlevalued function (colatitude vs longitude ), then Fourier analysis of ctn with respect to leads to a simple algorithm for realistically mapping the neutral line outward to model the heliospheric current sheet (HCS) at distancesr1 AU. To be compatible with MHD, the source surface used for this mapping should be prolate (aligned with dipole axis) rather than spherical. Orientation of the Sun's magnetic-dipole moment is indicated by them=1 Fourier amplitude (a 1 sin +b 1 cos ) of ctn on the source surface. Physical features (including the neutral line) on a prolate source surface intrinsically map to lower dipole latitudes atr1 AU in the heliosphere, and Ulysses observations of a unipolar field at latitudes beyond 30°S (when the neutral line on the source surface still reached 39°S) confirm the expected geometry.  相似文献   
199.
Space Science Reviews - Modern observatories have revealed the ubiquitous presence of magnetohydrodynamic waves in the solar corona. The propagating waves (in contrast to the standing waves) are...  相似文献   
200.
Life, as we know it, is based on carbon chemistry operating in an aqueous environment. Living organisms process chemicals, make copies of themselves, are autonomous and evolve in concert with the environment. All these characteristics are driven by, and operate through, carbon chemistry. The carbon chemistry of living systems is an exact branch of science and we have detailed knowledge of the basic metabolic and reproductive machinery of living organisms. We can recognise the residual biochemicals long after life has expired and otherwise lost most life-defining features. Carbon chemistry provides a tool for identifying extant and extinct life on Earth and, potentially, throughout the Universe. In recognizing that certain distinctive compounds isolable from living systems had related fossil derivatives, organic geochemists coined the term biological marker compound or biomarker (e.g. Eglinton et al. in Science 145:263–264, 1964) to describe them. In this terminology, biomarkers are metabolites or biochemicals by which we can identify particular kinds of living organisms as well as the molecular fossil derivatives by which we identify defunct counterparts. The terms biomarker and molecular biosignature are synonymous. A defining characteristic of terrestrial life is its metabolic versatility and adaptability and it is reasonable to expect that this is universal. Different physiologies operate for carbon acquisition, the garnering of energy and the storage and processing of information. As well as having a range of metabolisms, organisms build biomass suited to specific physical environments, habitats and their ecological imperatives. This overall ‘metabolic diversity’ manifests itself in an enormous variety of accompanying product molecules (i.e. natural products). The whole field of organic chemistry grew from their study and now provides tools to link metabolism (i.e. physiology) to the occurrence of biomarkers specific to, and diagnostic for, particular kinds of metabolism. Another characteristic of living things, also likely to be pervasive, is that an enormous diversity of large molecules are built from a relatively small subset of universal precursors. These include the four bases of DNA, 20 amino acids of proteins and two kinds of lipid building blocks. Third, life exploits the specificity inherent in the spatial, that is, the three-dimensional qualities of organic chemicals (stereochemistry). These characteristics then lead to some readily identifiable and measurable generic attributes that would be diagnostic as biosignatures. Measurable attributes of molecular biosignatures include:
  1. Enantiomeric excess
  2. Diastereoisomeric preference
  3. Structural isomer preference
  4. Repeating constitutional sub-units or atomic ratios
  5. Systematic isotopic ordering at molecular and intramolecular levels
  6. Uneven distribution patterns or clusters (e.g. C-number, concentration, δ 13C) of structurally related compounds.
In this paper we address details of the chemical and biosynthetic basis for these features, which largely arise as a consequence of construction from small, recurring sub-units. We also address how these attributes might become altered during diagenesis and planetary processing. Finally, we discuss the instrumental techniques and further developments needed to detect them.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号