全文获取类型
收费全文 | 3256篇 |
免费 | 26篇 |
国内免费 | 13篇 |
专业分类
航空 | 1574篇 |
航天技术 | 1150篇 |
综合类 | 4篇 |
航天 | 567篇 |
出版年
2021年 | 26篇 |
2019年 | 23篇 |
2018年 | 55篇 |
2017年 | 51篇 |
2016年 | 45篇 |
2015年 | 26篇 |
2014年 | 71篇 |
2013年 | 91篇 |
2012年 | 82篇 |
2011年 | 120篇 |
2010年 | 79篇 |
2009年 | 137篇 |
2008年 | 154篇 |
2007年 | 100篇 |
2006年 | 71篇 |
2005年 | 92篇 |
2004年 | 90篇 |
2003年 | 99篇 |
2002年 | 72篇 |
2001年 | 115篇 |
2000年 | 65篇 |
1999年 | 68篇 |
1998年 | 87篇 |
1997年 | 58篇 |
1996年 | 93篇 |
1995年 | 112篇 |
1994年 | 111篇 |
1993年 | 48篇 |
1992年 | 71篇 |
1991年 | 34篇 |
1990年 | 32篇 |
1989年 | 76篇 |
1988年 | 28篇 |
1987年 | 24篇 |
1986年 | 35篇 |
1985年 | 90篇 |
1984年 | 91篇 |
1983年 | 65篇 |
1982年 | 66篇 |
1981年 | 99篇 |
1980年 | 19篇 |
1979年 | 25篇 |
1978年 | 29篇 |
1977年 | 27篇 |
1975年 | 29篇 |
1974年 | 23篇 |
1973年 | 21篇 |
1972年 | 20篇 |
1969年 | 20篇 |
1968年 | 18篇 |
排序方式: 共有3295条查询结果,搜索用时 12 毫秒
391.
D. Abplanalp P. Wurz L. Huber I. Leya E. Kopp U. Rohner M. Wieser L. Kalla S. Barabash 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009,44(7):870-878
The Polar Balloon Atmospheric Composition Experiment (P-BACE) is a new generation of neutral gas mass spectrometer based on the time-of-flight principle. P-BACE is the scientific experiment on the Mars Environment Analog Platform (MEAP) flown successfully on a balloon mission in summer 2008. The MEAP mission was flown with a 334,000 m3 helium balloon in the stratosphere on a semicircular trajectory from northern Sweden around the North Pole to Canada using the summer northern hemispheric wind current. The atmospheric conditions at an atmospheric altitude of 35–40 km are remarkably similar to those on the surface of Mars and thus the balloon mission was an ideal testbed for our mass spectrometer P-BACE. Originally this instrument was designed for in situ measurements of the chemical composition of the Martian atmosphere.P-BACE has a unique mass range from 0 to 1000 amu/q with a mass resolution m/Δm (FWHM) > 1000, and the dynamic range is at least six orders of magnitude. During this experiment, the acquisition of one mass spectrum is a sum of 65,535 single spectra, recorded in a time frame of 66 s.The balloon mission lasted 5 days and had successfully demonstrated the functionality of the P-BACE instrument during flight conditions. We had recorded more than 4500 mass spectra. With little modifications, P-BACE can be used on a planetary mission for Mars, but for example also for Venus or Mercury, if placed on a satellite. 相似文献
392.
E. Pallé P.R. Goode 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009
The Earth’s albedo is one of the least studied fundamental climate parameters. The albedo is a bi-directional variable, and there is a high degree of anisotropy in the light reflected from a given terrestrial surface. However, simultaneously observing from all points on Earth at all reflecting angles is a practical impossibility. Therefore, all measurements from which albedo can be inferred require assumptions and/or modeling to derive a good estimate. Nowadays, albedo measurements are taken regularly either from low Earth orbit satellite platforms or from ground-based measurements of the earthshine from the dark side of the Moon. But the results from these different measurements are not in satisfactory agreement. Clearly, the availability of different albedo databases and their inter-comparisons can help to constrain the assumptions necessary to reduce the uncertainty of the albedo estimates. In recent years, there has been a renewed interest in the development of robotic and manned exploration missions to the Moon. Returning to the Moon will enable diverse exploration and scientific opportunities. Here we discuss the possibility of a lunar-based Earth radiation budget monitoring experiment, the Lunar Terrestrial Observatory, and evaluate its scientific and practical advantages compared to the other, more standard, observing platforms. We conclude that a lunar-based terrestrial observatory can enable advances in Earth sciences, complementary to the present efforts, and to our understanding of the Earth’s climate. 相似文献
393.
A.L. Mishev J.N. Stamenov I.I. Angelov N.O. Ahababian I.N. Kirov E.S. Malamova 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009
We review the main activities carried out at Moussala peak (2925 m above sea level, 42°11′N, 23°35′E) station in Bulgaria, connected with cosmic ray investigations during the last five decades. Several important results obtained at the station are reported. The detector design and corresponding methodological studies of the presently operational devices are shown as well, precisely the Cherenkov light telescope, lead free neutron monitor and muon telescope. The scientific potential of the existing complex is discussed. 相似文献
394.
395.
M R Sims C T Pillinger I P Wright J Dowson S Whitehead A Wells J E Spragg G Fraser L Richter H Hamacher A Johnstone N P Meredith C de la Nougerede B Hancock R Turner S Peskett A Brack J Hobbs M Newns A Senior M Humphries H U Keller N Thomas J S Lingard T C Ng 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1999,23(11):1925-1928
The aim of the proposed Beagle 2 small lander for ESA's 2003 Mars Express mission is to search for organic material on and below the surface of Mars and to study the inorganic chemistry and mineralogy of the landing site. The lander will have a total mass of 60kg including entry, descent, and landing system. Experiments will be deployed on the surface using a robotic arm. It will use a mechanical mole and grinder to obtain samples from below the surface, under rocks, and inside rocks. Sample analysis by a mass spectrometer will include isotopic analysis. An optical microscope, an X-ray spectrometer and a Mossbauer spectrometer will conduct in-situ rock studies. 相似文献
396.
Green AR Andrews HR Bennett LG Clifford ET Ing H Jonkmans G Lewis BJ Noulty RA Ough EA 《Acta Astronautica》2005,56(9-12):949-960
In light of the importance of the neutron contribution to the dose equivalent received by space workers in the near-Earth radiation environment, there is an increasing need for a personal dosimeter that is passive in nature and able to respond to this neutron field in real time. Recent Canadian technology has led to the development of a bubble detector, which is sensitive to neutrons, but insensitive to low linear energy transfer (LET) radiation. By changing the composition of the bubble detector fluid (or “superheat”), the detectors can be fabricated to respond to different types of radiation. This paper describes a preliminary ground-based research effort to better characterize the bubble detectors of different compositions at various charged-particle accelerator facilities, which are capable of simulating the space radiation field. 相似文献
397.
Light scattering in planetary atmospheres 总被引:45,自引:0,他引:45
This paper reviews scattering theory required for analysis of light reflected by planetary atmospheres. Section 1 defines the radiative quantities which are observed. Section 2 demonstrates the dependence of single-scattered radiation on the physical properties of the scatterers. Section 3 describes several methods to compute the effects of multiple scattering on the reflected light. 相似文献
398.
Radar target classification of commercial aircraft 总被引:1,自引:0,他引:1
With the increased availability of coherent wideband radars there has been a renewed interest in radar target recognition. A large bandwidth gives high resolution in range which means target discrimination may be possible. Coherence makes cross-range resolution and radar images possible. Some of the problems of classifying high resolution range profiles (HRRPs) are examined and simple preprocessing techniques which may aid subsequent target classification are investigated. These techniques are applied to HRRP data acquired at a local airport using the Microwave Radar Division (MRD) mobile radar facility It is found that Boeing 727 and Boeing 737 aircraft can be reliably distinguished over a range of aspect angles. This augers well for future target classification studies using HRRPs 相似文献
399.
Deborah L. Domingue Clark R. Chapman Rosemary M. Killen Thomas H. Zurbuchen Jason A. Gilbert Menelaos Sarantos Mehdi Benna James A. Slavin David Schriver Pavel M. Trávníček Thomas M. Orlando Ann L. Sprague David T. Blewett Jeffrey J. Gillis-Davis William C. Feldman David J. Lawrence George C. Ho Denton S. Ebel Larry R. Nittler Faith Vilas Carle M. Pieters Sean C. Solomon Catherine L. Johnson Reka M. Winslow Jörn Helbert Patrick N. Peplowski Shoshana Z. Weider Nelly Mouawad Noam R. Izenberg William E. McClintock 《Space Science Reviews》2014,181(1-4):121-214
Mercury’s regolith, derived from the crustal bedrock, has been altered by a set of space weathering processes. Before we can interpret crustal composition, it is necessary to understand the nature of these surface alterations. The processes that space weather the surface are the same as those that form Mercury’s exosphere (micrometeoroid flux and solar wind interactions) and are moderated by the local space environment and the presence of a global magnetic field. To comprehend how space weathering acts on Mercury’s regolith, an understanding is needed of how contributing processes act as an interactive system. As no direct information (e.g., from returned samples) is available about how the system of space weathering affects Mercury’s regolith, we use as a basis for comparison the current understanding of these same processes on lunar and asteroidal regoliths as well as laboratory simulations. These comparisons suggest that Mercury’s regolith is overturned more frequently (though the characteristic surface time for a grain is unknown even relative to the lunar case), more than an order of magnitude more melt and vapor per unit time and unit area is produced by impact processes than on the Moon (creating a higher glass content via grain coatings and agglutinates), the degree of surface irradiation is comparable to or greater than that on the Moon, and photon irradiation is up to an order of magnitude greater (creating amorphous grain rims, chemically reducing the upper layers of grains to produce nanometer-scale particles of metallic iron, and depleting surface grains in volatile elements and alkali metals). The processes that chemically reduce the surface and produce nanometer-scale particles on Mercury are suggested to be more effective than similar processes on the Moon. Estimated abundances of nanometer-scale particles can account for Mercury’s dark surface relative to that of the Moon without requiring macroscopic grains of opaque minerals. The presence of nanometer-scale particles may also account for Mercury’s relatively featureless visible–near-infrared reflectance spectra. Characteristics of material returned from asteroid 25143 Itokawa demonstrate that this nanometer-scale material need not be pure iron, raising the possibility that the nanometer-scale material on Mercury may have a composition different from iron metal [such as (Fe,Mg)S]. The expected depletion of volatiles and particularly alkali metals from solar-wind interaction processes are inconsistent with the detection of sodium, potassium, and sulfur within the regolith. One plausible explanation invokes a larger fine fraction (grain size <45 μm) and more radiation-damaged grains than in the lunar surface material to create a regolith that is a more efficient reservoir for these volatiles. By this view the volatile elements detected are present not only within the grain structures, but also as adsorbates within the regolith and deposits on the surfaces of the regolith grains. The comparisons with findings from the Moon and asteroids provide a basis for predicting how compositional modifications induced by space weathering have affected Mercury’s surface composition. 相似文献
400.
Algorithms for determining fixed-pitch propeller parameters and some flight characteristics of a superlight aircraft at the early stage of designing are described. 相似文献