排序方式: 共有33条查询结果,搜索用时 0 毫秒
31.
Claudia Borries Volker Wilken Knut Stanley Jacobsen Alberto García-Rigo Beata Dziak-Jankowska Guram Kervalishvili Norbert Jakowski Ioanna Tsagouri Manuel Hernández-Pajares Arthur A. Ferreira Mainul M. Hoque 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2021,67(2):919-920
32.
Mihail P. Petkov Steven M. Jones Gerald E. Voecks Kenneth J. Hurst Olivier Grosjean Delphine Faye Guillaume Rioland Cecily M. Sunday Emma M. Bradford William N. Warner Jerami M. Mennella Ned W. Ferraro Manuel Gallegos David M. Soules Philippe Lognonné W. Bruce Banerdt Jeffrey W. Umland 《Space Science Reviews》2018,214(8):112
We report on the development of a passive sorption pump, capable of maintaining high-vacuum conditions in the InSight seismometer throughout the duration of any extended mission. The adsorber material is a novel zeolite-loaded aerogel (ZLA) composite, which consists of fine zeolite particles homogeneously dispersed throughout a porous silica network. The outgassing species within the SEIS evacuated container were analyzed and the outgassing rate was estimated by different methods. The results were used to optimize the ZLA composition to adsorb the outgassing constituents, dominated by water, while minimizing the SEIS bakeout constraints. The InSight ZLA composite additionally facilitated substantial CO2 adsorption capabilities for risk mitigation against external leaks in Mars atmosphere. To comply with the stringent particle requirements, the ZLA getters were packaged in sealed containers, open to the SEIS interior through \(1~\upmu\mbox{m}\)-size pore filters. Results from experimental validation and verification tests of the packaged getters are presented. The pressure forecast based on these data, corroborated by rudimentary in situ pressure measurements, infer SEIS operational pressures not exceeding \(10^{-5}~\mbox{mbar}\) throughout the mission. 相似文献
33.
Sebastián Sánchez Manuel PrietoÓscar R. Polo Pablo ParraAntonio da Silva Óscar GutiérrezRonald Castillo Javier FernándezJavier Rodríguez-Pacheco 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
ESA’s medium-class Solar Orbiter mission is conceived to perform a close-up study of our Sun and its inner heliosphere to better understand the behaviour of our star. The mission will provide the clues to discover how the Sun creates and controls the solar wind and thereby affects the environments of all the planets. The spacecraft is equipped with a comprehensive suite of instruments. The Energetic Particle Detector (EPD) is one of the in-situ instruments on-board Solar Orbiter. EPD is composed of five different sensors, all of them sharing the Instrument Control Unit or ICU that is the sole interface with the spacecraft. This paper emphasises on how the hardware/software co-design approach can lead to a decrease in software complexity and highlights the versatility of the toolset that supports the development process. Following a model-driven engineering approach, these tools are capable of generating the high-level code of the software application, as well as of facilitating its configuration control and its deployment on the hardware platforms used in the different stages of the development process. Moreover, the use of the Leon2ViP virtual platform, with fault injection capabilities, allows an early software-before-hardware verification and validation and also a hardware–software co-simulation. The adopted solutions reduce development time without compromising the whole process reliability that is essential to the EPD success. 相似文献