首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18825篇
  免费   37篇
  国内免费   123篇
航空   10086篇
航天技术   5632篇
综合类   249篇
航天   3018篇
  2021年   157篇
  2018年   255篇
  2016年   165篇
  2014年   433篇
  2013年   518篇
  2012年   433篇
  2011年   639篇
  2010年   459篇
  2009年   806篇
  2008年   827篇
  2007年   429篇
  2006年   429篇
  2005年   426篇
  2004年   472篇
  2003年   552篇
  2002年   487篇
  2001年   601篇
  2000年   373篇
  1999年   466篇
  1998年   457篇
  1997年   340篇
  1996年   409篇
  1995年   475篇
  1994年   457篇
  1993年   359篇
  1992年   350篇
  1991年   250篇
  1990年   238篇
  1989年   411篇
  1988年   209篇
  1987年   243篇
  1986年   238篇
  1985年   642篇
  1984年   522篇
  1983年   409篇
  1982年   488篇
  1981年   618篇
  1980年   246篇
  1979年   186篇
  1978年   189篇
  1977年   146篇
  1976年   156篇
  1975年   188篇
  1974年   180篇
  1973年   161篇
  1972年   188篇
  1971年   148篇
  1970年   143篇
  1969年   147篇
  1967年   142篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
731.
It may not be doubted anymore that anomalous cosmic rays (ACRs) are produced in the heliosphere from interplanetary pick-up ions through their acceleration at the solar wind termination shock. However, there is no general agreement in the community of heliospheric researchers concerning the mechanism of injection of the pick-up ions into the shock acceleration. We discuss here three possible ways for pick-up ions to be involved into the acceleration process at the termination shock: (1) preacceleration of pick-up ions in the whole region from the Sun up to the termination shock by solar wind turbulences and interplanetary shock waves, (2) local preacceleration of pick-up ions in a vicinity of the termination shock by shock surfing, and (3) formation of high-velocity tails in pick-up ion spectra consisting of secondary pick-up ions which are produced in the supersonic solar wind due to ionization of energetic neutral atoms entering from the inner heliosheath.  相似文献   
732.
Noise in wireless systems from solar radio bursts   总被引:1,自引:0,他引:1  
Solar radio bursts were first discovered as result of their interference in early defensive radar systems during the Second World War (1942). Such bursts can still affect radar systems, as well as new wireless technologies. We have investigated a forty-year record of solar radio burst data (1960–1999) as well as several individual radio events in the 23rd solar cycle. This paper reviews the results of a portion of this research. Statistically, for frequencies f  1 GHz (near current wireless bands), there can be a burst with amplitudes >103 solar flux units (SFU; 1 SFU = 10−22 W/m2) every few days during solar maximum conditions, and such burst levels can produce problems in contemporary wireless systems.  相似文献   
733.
Relativistic jets are a common property of radio-loud Active Galactic Nuclei (AGN). Understanding jet physical properties is an essential precursor to understanding the mechanisms of energy transport, and ultimately, how energy is extracted from the central black hole. In this paper, I highlight recent developments from Chandra and HST observations of kpc-scale jets in AGN, with particular emphasis on our survey of 17 radio jets in a sample of FRII radio galaxies. These observations show that (1) X-ray and optical emission is common from kpc-scale jets, (2) a large fraction of the bolometric luminosity is emitted at X-rays, and (3) in most sources, a candidate emission process for the X-rays is inverse Compton scattering of the Cosmic Microwave Background off the relativistic electrons in the jet. If the latter scenario holds, the implication is that jets are still relativistic on kpc scales.  相似文献   
734.
Regoliths are a most important component of solar system bodies. The study of their formation and evolution depends upon measurements from orbiting spacecraft or Earth-based observations, and by the development of models addressing formation and evolution scenarios, physical properties and composition of the constituent materials. For asteroids and comets, recent measurements tend to confirm the idea of extremely low bulk densities. The porosity of the outermost regolith layers should thus reach very high values. Regolith formation and growth partly depends upon gravity and mechanical properties of its constituent particles, which are very poorly documented. Gravitational effects play an important role in the shaping processes of large bodies, while material strength properties are more important for smaller bodies. The understanding of both, aggregation processes of, and of light scattering from, such media, would strongly benefit from experiments led under microgravity, and provide insight into regolith formation processes: much lower collision and aggregation velocities can be achieved in a microgravity environment, leading to the formation of much fluffier aggregates than possible on Earth. ICAPS is a multi-year scientific programme to simulate cosmic and atmospheric particle systems on board the International Space Station. The ICAPS facility will allow to build simulated regolith and thus enable the study of their mechanical and optical properties. Measurements such as tensile strength, electrical and thermal conductivities, compressibility and porosity, will be made, as well as monitoring of collisions into such simulated regolith. The article discusses the ICAPS research plan for regolith studies and the facility current status.  相似文献   
735.
For humans to survive during long-term missions on the Martian surface, bioregenerative life support systems including food production will decrease requirements for launch of Earth supplies, and increase mission safety. It is proposed that the development of "modular biospheres"--closed system units that can be air-locked together and which contain soil-based bioregenerative agriculture, horticulture, with a wetland wastewater treatment system is an approach for Mars habitation scenarios. Based on previous work done in long-term life support at Biosphere 2 and other closed ecological systems, this consortium proposes a research and development program called Mars On Earth(TM) which will simulate a life support system designed for a four person crew. The structure will consist of 6 x 110 square meter modular agricultural units designed to produce a nutritionally adequate diet for 4 people, recycling all air, water and waste, while utilizing a soil created by the organic enrichment and modification of Mars simulant soils. Further research needs are discussed, such as determining optimal light levels for growth of the necessary range of crops, energy trade-offs for agriculture (e.g. light intensity vs. required area), capabilities of Martian soils and their need for enrichment and elimination of oxides, strategies for use of human waste products, and maintaining atmospheric balance between people, plants and soils.  相似文献   
736.
Theory of the plasma sheet with medium-scale developed turbulence gives the possibility to explain the main processes of plasma sheet bifurcation and theta-aurora formation during IMF Bz > 0. The model suggests that during IMF Bz > 0 small bulge structure in the plasma sheet center is formed. The polarization of the bulge due to dawnward electron motion and duskward ion motion decreases the large-scale electric field in the bulge region. The decrease of the large-scale field in the conditions of constant coefficient of diffusion leads to the bulge growth. The results of plasma sheet bifurcation and theta-aurora formation modelling are presented.  相似文献   
737.
During the construction phase of the International Space Station (ISS), early flight opportunities have been identified (including designated Utilization Flights, UF) on which early science experiments may be performed. The focus of NASA's and other agencies' biological studies on the early flight opportunities is cell and molecular biology; with UF-1 scheduled to fly in fall 2001, followed by flights 8A and UF-3. Specific hardware is being developed to verify design concepts, e.g., the Avian Development Facility for incubation of small eggs and the Biomass Production System for plant cultivation. Other hardware concepts will utilize those early research opportunities onboard the ISS, e.g., an Incubator for sample cultivation, the European Modular Cultivation System for research with small plant systems, an Insect Habitat for support of insect species. Following the first Utilization Flights, additional equipment will be transported to the ISS to expand research opportunities and capabilities, e.g., a Cell Culture Unit, the Advanced Animal Habitat for rodents, an Aquatic Facility to support small fish and aquatic specimens, a Plant Research Unit for plant cultivation, and a specialized Egg Incubator for developmental biology studies. Host systems (Figure 1A, B: see text), e.g., a 2.5 m Centrifuge Rotor (g-levels from 0.01-g to 2-g) for direct comparisons between g and selectable g levels, the Life Sciences Glovebox for contained manipulations, and Habitat Holding Racks (Figure 1B: see text) will provide electrical power, communication links, and cooling to the habitats. Habitats will provide food, water, light, air and waste management as well as humidity and temperature control for a variety of research organisms. Operators on Earth and the crew on the ISS will be able to send commands to the laboratory equipment to monitor and control the environmental and experimental parameters inside specific habitats. Common laboratory equipment such as microscopes, cryo freezers, radiation dosimeters, and mass measurement devices are also currently in design stages by NASA and the ISS international partners.  相似文献   
738.
The Yohkoh soft X-ray telescope obtains several images every 90 minutes. Data from the declining phase of the solar cycle have been used to compare the X-ray signal with other indicators of activity and to study coronal heating. X-ray emission from a north polar coronal hole is found broadly consistent with results of previous EUV observations. In diffuse emission regions, temperature rises to around 2.2 MK and levels off in the height range 1.5 – 1.9 RO. Such emission underlies streamers and may be the source of the low-speed solar wind. X-ray signatures for Coronal Mass Ejection (CME) events which involve the detection of reduced X-ray intensities in the corona, have been developed with Yohkoh data. CME observations are described  相似文献   
739.
The SOHO (SOlar and Heliospheric Observatory) satellite was launched on December 2nd 1995. After arriving at the Earth-Sun (L1) Lagrangian point on February 14th 1996, it began to continuously observe the Sun. As one of the instruments onboard SOHO, the EIT (Extreme ultraviolet Imaging Telescope) images the Sun's corona in 4 EUV wavelengths. The He II filter at 304 Å images the chromosphere and the base of the transition region at a temperature of 5 − 8 × 104 K; the Fe IX–X filter at 171 Å images the corona at a temperature of 1.3 × 106 K; the Fe XII filter at 195 Å images the quiet corona outside coronal holes at a temperature of 1.6 × 106 K; and the Fe XV filter at 284 Å images active regions with a temperature of 2.0 × 106 K. About 5000 images have been obtained up to the present. In this paper, we describe also some aspects of the telescope and the detector performance for application in the observations. Images and movies of all the wavelengths allow a look at different phenomena present in the Sun's corona, and in particular, magnetic field reconnection.  相似文献   
740.
The response of spores of Bacillus subtilis, cells of Deinococcus radiodurans and conidia of Aspergillus ochraceus to actual and simulated space conditions (UV in combination with long-term exposure to extremely dry conditions, including vacuum) has been studied: The following effects have been analyzed: decrease of viability, occurrence of DNA double strand breaks, formation of DNA-protein cross-links and DNA-DNA cross-links. All organisms show an increased sensitivity to UV light in extreme dryness (dry argon or vacuum) compared to an irradiation in aqueous suspension. The UV irradiation leads in all cases to a variety of DNA lesions. Very conspicuous is the occurrence of double strand breaks. Most of these double strand breaks are produced by incomplete repair of other lesions, especially base damages. The increase in DNA lesions can be correlated to the loss in viability. The specific response of the chromosomal DNA to UV irradiation in extreme dryness, however, varies from species to species and depends on the state of dehydration. The formation of DNA double strand breaks and DNA-protein cross-links prevails in the case of B. subtilis spores. In cells of Deinococcus radiodurans DNA-DNA cross-links often predominate, in conidia of Aspergillus ochraceus double strand breaks. The results obtained by direct exposure to space conditions (EURECA mission and D2 mission) largely agree with the laboratory data.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号