全文获取类型
收费全文 | 5700篇 |
免费 | 13篇 |
国内免费 | 29篇 |
专业分类
航空 | 2574篇 |
航天技术 | 2175篇 |
综合类 | 19篇 |
航天 | 974篇 |
出版年
2021年 | 54篇 |
2019年 | 40篇 |
2018年 | 120篇 |
2017年 | 82篇 |
2016年 | 72篇 |
2015年 | 25篇 |
2014年 | 126篇 |
2013年 | 164篇 |
2012年 | 155篇 |
2011年 | 228篇 |
2010年 | 147篇 |
2009年 | 257篇 |
2008年 | 314篇 |
2007年 | 168篇 |
2006年 | 145篇 |
2005年 | 174篇 |
2004年 | 177篇 |
2003年 | 198篇 |
2002年 | 123篇 |
2001年 | 183篇 |
2000年 | 128篇 |
1999年 | 139篇 |
1998年 | 158篇 |
1997年 | 125篇 |
1996年 | 153篇 |
1995年 | 197篇 |
1994年 | 178篇 |
1993年 | 93篇 |
1992年 | 144篇 |
1991年 | 49篇 |
1990年 | 51篇 |
1989年 | 127篇 |
1988年 | 41篇 |
1987年 | 41篇 |
1986年 | 58篇 |
1985年 | 172篇 |
1984年 | 132篇 |
1983年 | 106篇 |
1982年 | 132篇 |
1981年 | 154篇 |
1980年 | 45篇 |
1979年 | 30篇 |
1978年 | 37篇 |
1977年 | 36篇 |
1976年 | 29篇 |
1975年 | 26篇 |
1974年 | 34篇 |
1973年 | 25篇 |
1970年 | 27篇 |
1969年 | 24篇 |
排序方式: 共有5742条查询结果,搜索用时 15 毫秒
161.
K. Miyamoto M. Oka R. Yamamoto Y. Masuda T. Hoson S. Kamisaka J. Ueda 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1999,23(12):2033-2036
Activity of auxin polar transport in inflorescence axes of Arabidopsis thaliana grown under simulated microgravity conditions was studied in relation to the growth and development. Seeds were germinated and allowed to grow on an agar medium in test tubes on a horizontal clinostat. Horizontal clinostat rotation substantially reduced the growth of inflorescence axes and the productivity of seeds of Arabidopsis thaliana (ecotypes Landsberg erecta and Columbia), although it little affected seed germination, development of rosette leaves and flowering. The activity of auxin polar transport in inflorescence axes decreased when Arabidopsis plants were grown on a horizontal clinostat from germination stage, being ca. 60% of 1 g control. On the other hand, the auxin polar transport in inflorescence axes of Arabidopsis grown in 1 g conditions was not affected when the segments were exposed to various gravistimuli, including 3-dimensional clinorotation, during transport experiments. Pin-formed mutant of Arabidopsis, having a unique structure of the inflorescence axis with no flower and extremely low levels of the activity of auxin polar transport in inflorescence axes and endogenous auxin, did not continue its vegetative growth under clinostat rotation. These facts suggest that the development of the system of auxin polar transport in Arabidopsis is affected by microgravity, resulting in the inhibition of growth and development, especially during reproductive growth. 相似文献
162.
A Sato T Hamazaki T Oomura H Osada M Kakeya M Watanabe T Nakamura Y Nakamura N Koshikawa I Yoshizaki S Aizawa S Yoda A Ogiso M Takaoki Y Kohno H Tanaka 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1999,24(6):807-813
The paper summarizes the data on proliferation and gravity-related gene expression of osteoblasts that were obtained from an experiment conducted under simulated and real microgravity conditions. Simulated microgravity conditions obtained in a clinostat depress proliferation of both osteoblast-like MC3T3-E1 and HeLa carcinoma cells. This depression of proliferation occurs in a collagen gel culture in which the flow of culture medium by rotation may be reduced. Interestingly, MC3T3-E1 cells which are probably one of target cells to microgravity are more sensitive than the HeLa cells. Simulated microgravity inhibited the epidermal growth factor (EGF)-induced c-fos gene expression in the MC3T3-El cells. To examine in detail the effect of real microgravity on the EGF signal transduction cascade in osteoblasts, MC3T3-E1 cells were cultured in the Cell Culture Experiment Module of the sounding rocket TR-1A6. The EGF-induced c-fos expression in cells was depressed under short-term microgravity conditions in the sounding rocket, while the phosphorylation of mitogen-activated protein kinase (MAPK) was not affected compared with the controls grown on the ground. These results suggest that an action site of microgravity in the signal transduction pathway may be downstream of MAPK. 相似文献
163.
F Raulin P Coll N Smith Y Benilan P Bruston M C Gazeau 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1999,24(4):453-460
Titan, the largest satellite of Saturn, with a dense atmosphere very rich in organics, and many couplings in the various parts of its "geofluid", is a reference for studying prebiotic chemistry on a planetary scale. New data have been obtained from experiments simulating this organic chemistry (gas and aerosol phases), within the right ranges of temperature and a careful avoiding of any chemical contamination. They show a very good agreement with the observational data, demonstrating for the first time the formation of all the organic species already detected in Titan atmosphere including, at last, C4N2, together with many other species not yet detected in Titan. This strongly suggests the presence of more complex organics in Titan's atmosphere and surface, including high molecular weight polyynes and cyanopolyynes. The NASA-ESA Cassini-Huygens mission has been successfully launched in October 1997. The Cassini spacecraft will reach the Saturn system in 2004 and become an orbiter around Saturn, while the Huygens probe will penetrate into Titan's atmosphere. In situ measurements, in particular from Huygens GC-MS and ACP instruments, will provide a detailed analysis of the organics present in the air, aerosols, and surface. This very ambitious mission should yield much information of crucial importance for our knowledge of the complexity of Titan's chemistry, and, more generally for the field of exobiology. 相似文献
164.
The vortical mixing concept in the ramjet channel is analyzed. The results of simulating the gasodynamic scheme permit the concept of increasing efficiency for ramjet operation to be substantiated. 相似文献
165.
E. O. Ariskin A. V. Nikitin V. V. Soldatkin V. M. Soldatkin 《Russian Aeronautics (Iz VUZ)》2015,58(4):454-460
The problem and features of measuring the speed and the direction angle of the wind vector relative to the longitudinal helicopter axis during parking, starting and takeoff-landing modes by onboard means are considered. The construction principles, information processing algorithms and advantages of onboard system for measuring the wind vector parameters based on ion-beacon and aerometric measuring channels, are disclosed. 相似文献
166.
The commenters point out that the idea using a two-dimensional digital correlation technique to perform synthetic-aperture-radar (SAR) processing, presented as new in the above-titled paper (see ibid., vol.24, p.218-23, May 1988), was described by them as early as 1978 and has since been described by other authors. They discuss some of these earlier studies. The author replies that he was unaware of the earlier work, and that he did not intend to convey the impression that the nonseparable transform domain processor that he presented was the first 相似文献
167.
We present up-to-date evolutionary models of low-mass stars, from M0.6 M down to the hydrogen burning minimum mass, using recent equation of state and synthetic spectra calculations. Comparison is made with observed luminosity function for these objects. We also present implications for the dark-matter distribution in the galactic halo. 相似文献
168.
Foley TM 《Aerospace America》1995,33(4):24-30
The current state of space life sciences knowledge and research is described. Findings about the health of astronauts in space are reviewed and a plea is made by some former astronauts to increase the amount of research being conducted. Longitudinal studies of the long term effects of space travel, especially radiation exposure, are being conducted and have yet to show any ill effects. Current research focuses are discussed, including Neurolab, an upcoming shuttle mission devoted to neurological and vestibular research. Experiment and spacecraft hardware is discussed, as are future directions in research. Partnership with Russian space life sciences investigators is also underway. 相似文献
169.
Louise M. Prockter Rosaly M. C. Lopes Bernd Giese Ralf Jaumann Ralph D. Lorenz Robert T. Pappalardo Gerald W. Patterson Peter C. Thomas Elizabeth P. Turtle Roland J. Wagner 《Space Science Reviews》2010,153(1-4):63-111
The surfaces of the Solar System’s icy satellites show an extraordinary variety of morphological features, which bear witness to exchange processes between the surface and subsurface. In this paper we review the characteristics of surface features on the moons of Jupiter, Saturn, Uranus and Neptune. Using data from spacecraft missions, we discuss the detailed morphology, size, and topography of cryovolcanic, tectonic, aeolian, fluvial, and impact features of both large moons and smaller satellites. 相似文献
170.
S. M. Krimigis D. G. Mitchell D. C. Hamilton S. Livi J. Dandouras S. Jaskulek T. P. Armstrong J. D. Boldt A. F. Cheng G. Gloeckler J. R. Hayes K. C. Hsieh W.-H. Ip E. P. Keath E. Kirsch N. Krupp L. J. Lanzerotti R. Lundgren B. H. Mauk R. W. McEntire E. C. Roelof C. E. Schlemm B. E. Tossman B. Wilken D. J. Williams 《Space Science Reviews》2004,114(1-4):233-329
The magnetospheric imaging instrument (MIMI) is a neutral and charged particle detection system on the Cassini orbiter spacecraft designed to perform both global imaging and in-situ measurements to study the overall configuration and dynamics of Saturn’s magnetosphere and its interactions with the solar wind, Saturn’s atmosphere, Titan, and the icy satellites. The processes responsible for Saturn’s aurora will be investigated; a search will be performed for substorms at Saturn; and the origins of magnetospheric hot plasmas will be determined. Further, the Jovian magnetosphere and Io torus will be imaged during Jupiter flyby. The investigative approach is twofold. (1) Perform remote sensing of the magnetospheric energetic (E > 7 keV) ion plasmas by detecting and imaging charge-exchange neutrals, created when magnetospheric ions capture electrons from ambient neutral gas. Such escaping neutrals were detected by the Voyager l spacecraft outside Saturn’s magnetosphere and can be used like photons to form images of the emitting regions, as has been demonstrated at Earth. (2) Determine through in-situ measurements the 3-D particle distribution functions including ion composition and charge states (E > 3 keV/e). The combination of in-situ measurements with global images, together with analysis and interpretation techniques that include direct “forward modeling’’ and deconvolution by tomography, is expected to yield a global assessment of magnetospheric structure and dynamics, including (a) magnetospheric ring currents and hot plasma populations, (b) magnetic field distortions, (c) electric field configuration, (d) particle injection boundaries associated with magnetic storms and substorms, and (e) the connection of the magnetosphere to ionospheric altitudes. Titan and its torus will stand out in energetic neutral images throughout the Cassini orbit, and thus serve as a continuous remote probe of ion flux variations near 20R
S (e.g., magnetopause crossings and substorm plasma injections). The Titan exosphere and its cometary interaction with magnetospheric plasmas will be imaged in detail on each flyby. The three principal sensors of MIMI consists of an ion and neutral camera (INCA), a charge–energy–mass-spectrometer (CHEMS) essentially identical to our instrument flown on the ISTP/Geotail spacecraft, and the low energy magnetospheric measurements system (LEMMS), an advanced design of one of our sensors flown on the Galileo spacecraft. The INCA head is a large geometry factor (G ∼ 2.4 cm2 sr) foil time-of-flight (TOF) camera that separately registers the incident direction of either energetic neutral atoms (ENA) or ion species (≥5∘ full width half maximum) over the range 7 keV/nuc < E < 3 MeV/nuc. CHEMS uses electrostatic deflection, TOF, and energy measurement to determine ion energy, charge state, mass, and 3-D anisotropy in the range 3 ≤ E ≤ 220 keV/e with good (∼0.05 cm2 sr) sensitivity. LEMMS is a two-ended telescope that measures ions in the range 0.03 ≤ E ≤ 18 MeV and electrons 0.015 ≤ E≤ 0.884 MeV in the forward direction (G ∼ 0.02 cm2 sr), while high energy electrons (0.1–5 MeV) and ions (1.6–160 MeV) are measured from the back direction (G ∼ 0.4 cm2 sr). The latter are relevant to inner magnetosphere studies of diffusion processes and satellite microsignatures as well as cosmic ray albedo neutron decay (CRAND). Our analyses of Voyager energetic neutral particle and Lyman-α measurements show that INCA will provide statistically significant global magnetospheric images from a distance of ∼60 R
S every 2–3 h (every ∼10 min from ∼20 R
S). Moreover, during Titan flybys, INCA will provide images of the interaction of the Titan exosphere with the Saturn magnetosphere every 1.5 min. Time resolution for charged particle measurements can be < 0.1 s, which is more than adequate for microsignature studies. Data obtained during Venus-2 flyby and Earth swingby in June and August 1999, respectively, and Jupiter flyby in December 2000 to January 2001 show that the instrument is performing well, has made important and heretofore unobtainable measurements in interplanetary space at Jupiter, and will likely obtain high-quality data throughout each orbit of the Cassini mission at Saturn. Sample data from each of the three sensors during the August 18 Earth swingby are shown, including the first ENA image of part of the ring current obtained by an instrument specifically designed for this purpose. Similarily, measurements in cis-Jovian space include the first detailed charge state determination of Iogenic ions and several ENA images of that planet’s magnetosphere.This revised version was published online in July 2005 with a corrected cover date. 相似文献