首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5941篇
  免费   48篇
  国内免费   38篇
航空   2682篇
航天技术   2223篇
综合类   37篇
航天   1085篇
  2021年   67篇
  2019年   47篇
  2018年   145篇
  2017年   109篇
  2016年   83篇
  2015年   38篇
  2014年   137篇
  2013年   169篇
  2012年   161篇
  2011年   249篇
  2010年   157篇
  2009年   265篇
  2008年   322篇
  2007年   170篇
  2006年   151篇
  2005年   183篇
  2004年   188篇
  2003年   217篇
  2002年   139篇
  2001年   190篇
  2000年   134篇
  1999年   148篇
  1998年   159篇
  1997年   125篇
  1996年   155篇
  1995年   200篇
  1994年   180篇
  1993年   94篇
  1992年   151篇
  1991年   49篇
  1990年   51篇
  1989年   127篇
  1988年   40篇
  1987年   40篇
  1986年   58篇
  1985年   176篇
  1984年   132篇
  1983年   107篇
  1982年   133篇
  1981年   156篇
  1980年   45篇
  1979年   30篇
  1978年   37篇
  1977年   36篇
  1976年   30篇
  1975年   26篇
  1974年   34篇
  1973年   25篇
  1970年   27篇
  1969年   24篇
排序方式: 共有6027条查询结果,搜索用时 15 毫秒
211.
The plasma environment of comet 67P/Churyumov-Gerasimenko, the Rosetta mission target comet, is explored over a range of heliocentric distances throughout the mission: 3.25 AU (Rosetta instruments on), 2.7 AU (Lander down), 2.0 AU, and 1.3 AU (perihelion). Because of the large range of gas production rates, we have used both a fluid-based magnetohydrodynamic (MHD) model as well as a semi-kinetic hybrid particle model to study the plasma distribution. We describe the variation in plasma environs over the mission as well as the differences between the two modeling approaches under different conditions. In addition, we present results from a field aligned, two-stream transport electron model of the suprathermal electron flux when the comet is near perihelion.  相似文献   
212.
In paleoclimate studies, cosmogenic isotopes are frequently used as proxy indicators of past variations in solar irradiance on centennial and millennial timescales. These isotopes are spallation products of galactic cosmic rays (GCRs) impacting Earth's atmosphere, which are deposited and stored in terrestrial reservoirs such as ice sheets, ocean sediments and tree trunks. On timescales shorter than the variations in the geomagnetic field, they are modulated by the heliosphere and thus they are, strictly speaking, an index of heliospheric variability rather than one of solar variability. Strong evidence of climate variations associated with the production (as opposed to the deposition) of these isotopes is emerging. This raises a vital question: do cosmic rays have a direct influence on climate or are they a good proxy indicator for another factor that does (such as the total or spectral solar irradiance)? The former possibility raises further questions about the possible growth of air ions generated by cosmic rays into cloud condensation nuclei and/or the modulation of the global thunderstorm electric circuit. The latter possibility requires new understanding about the required relationship between the heliospheric magnetic fields that scatter cosmic rays and the photospheric magnetic fields which modulate solar irradiance.  相似文献   
213.
对旋轴流风机非定常流场数值模拟   总被引:2,自引:0,他引:2  
利用全隐格式的非稳态压力修正求解方法,分析和研究了对旋叶轮级间流场非定常流动情况,上游尾迹与下游叶片位势作用对流场的影响,并与动态实验结果进行了有益的对比.结果表明:非定常流场的计算更能反映叶轮机实际运行性能,如果能很好地组织对旋叶轮的非定常流动,还可以进一步提高其压比和效率.  相似文献   
214.
Future space missions aiming at the accurate measurement of cold plasmas and DC to very low frequency electric fields will require that the potential of their conductive surfaces be actively controlled to be near the ambient plasma potential. In the near-Earth space these spacecraft are usually solar-cell powered; consequently, parts of their surface are most of the time exposed to solar photons. Outside the plasmasphere, a positive surface potential due the dominance of surface-emitted photoelectrons over ambient plasma electrons is to be expected. Photo- and ambient electrons largely determine the potential and positive values between a few Volts up to 100 V have been observed. Active ion emission is the obvious solution of this problem. A liquid metal ion emitter and a saddle field ion emitter are nearing the stage of flight unit fabrication. We will attempt to clamp the spacecraft potential to values close to the plasma potential. We present first results from vacuum chamber tests and describe the emission behaviour and characteristics of emitters producing, respectively, In+ and N2+ beams with an energy of ≥ 5 keV.  相似文献   
215.
We investigate properties of large (>20%) and sharp (<10 min) solar wind ion flux changes using INTERBALL-1 and WIND plasma and magnetic field measurements from 1996 to 1999. These ion flux changes are the boundaries of small-scale and middle-scale solar wind structures. We describe the behavior of the solar wind velocity, temperature and interplanetary magnetic field (IMF) during these sudden flux changes. Many of the largest ion flux changes occur during periods when the solar wind velocity is nearly constant, so these are mainly plasma density changes. The IMF magnitude and direction changes at these events can be either large or small. For about 55% of the ion flux changes, the sum of the thermal and magnetic pressure are in balance across the boundary. In many of the other cases, the thermal pressure change is significantly more than the magnetic pressure change. We also attempted to classify the types of discontinuities observed.  相似文献   
216.
The ultraviolet (UV) environment of Mars has been investigated to gain an understanding of the variation of exposure throughout a Martian year, and link this flux to biological effects and possible survival of organisms at the Martian surface. To gain an idea of how the solar UV radiation varies between different regions, including planned landing sites of two future Mars surface missions, we modelled the total solar UV surface flux throughout one Martian year for two different dust scenarios. To understand the degree of solar UV stress on micro-organisms and/or molecules essential for life on the surface of Mars, we also calculated the biologically effective dose (BED) for T7 and Uracil in relevant wavelength regions at the Martian surface as a function of season and latitude, and discuss the biological survival rates in the presence of Martian solar UV radiation. High T7/Uracil BED ratios indicate that even at high latitudes where the UV flux is significantly reduced, the radiation environment is still hostile for life due to the persisting UV-C component of the flux.  相似文献   
217.
The northward and southward orientation of the interplanetary magnetic field (IMF) is usually considered as providing the external boundary conditions in the solar wind interaction with the Earth's magnetopause but it is the magnetic field in the magnetosheath that interacts with the Earth's magnetic field. In this paper, we consider the possibility that the wave activity in the foreshock region may affect the magnetic field orientation in the magnetosheath with time scales that might be geomagnetically effective. If magnetosheath magnetic field becomes disturbed on plasma streamlines which are connected to the quasi-parallel bow shock and foreshock, the magnetic field orientation on the inner magnetosheath may differ significantly from the undisturbed IMF. We present a model of dayside reconnection which may occur when the IMF northward and illustrate its effects on the erosion of the magnetopause.  相似文献   
218.
We examined whether microgravity influences the induced-mutation frequencies through in vivo experiments during space flight aboard the space shuttle Discovery (STS-91). We prepared dried samples of repair-deficient strains and parental strains of Escherichia (E.) coli and Saccharomyces (S.) cerevisiae given DNA damage treatment. After culture in space, we measured the induced-mutation frequencies and SOS-responses under microgravity. The experimental findings indicate that almost the same induced-mutation frequencies and SOS-responses of space samples were observed in both strains compared with the ground control samples. It is suggested that microgravity might not influence induced-mutation frequencies and SOS-responses at the stages of DNA replication and/or DNA repair. In addition, we developed a new experimental apparatus for space experiments to culture and freeze stocks of E. coli and S. cerevisiae cells.  相似文献   
219.
To clarify the effects of gravity on heat/gas exchange between plant leaves and the ambient air, the leaf temperatures and net photosynthetic rates of plant leaves were evaluated at 0.01, 1.0, 1.5 and 2.0 G of 20 seconds each during a parabolic airplane flight. Thermal images of leaves were captured using infrared thermography at an air temperature of 26 degrees C, a relative humidity of 15% and an irradiance of 260 W m-2. The net photosynthetic rates were determined by using a chamber method with an infrared gas analyzer at an air temperature of 20 degrees C, a relative humidity of 50% and a photosynthetic photon flux of 0.5 mmol m-2 s-1. The mean leaf temperature increased by 1 degree C and the net photosynthetic rate decreased by 13% with decreasing gravity levels from 1.0 to 0.01 G. The leaf temperature decreased by 0.5 degree C and the net photosynthetic rate increased by 7% with increasing gravity levels from 1.0 to 2.0 G. Heat/gas exchanges between leaves and the ambient air were more retarded at lower gravity levels. A restricted free air convection under microgravity conditions in space would limit plant growth by retarding heat and gas exchanges between leaves and the ambient air.  相似文献   
220.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号