全文获取类型
收费全文 | 7754篇 |
免费 | 18篇 |
国内免费 | 33篇 |
专业分类
航空 | 3397篇 |
航天技术 | 2784篇 |
综合类 | 32篇 |
航天 | 1592篇 |
出版年
2021年 | 77篇 |
2019年 | 47篇 |
2018年 | 203篇 |
2017年 | 147篇 |
2016年 | 144篇 |
2015年 | 55篇 |
2014年 | 200篇 |
2013年 | 247篇 |
2012年 | 228篇 |
2011年 | 327篇 |
2010年 | 235篇 |
2009年 | 395篇 |
2008年 | 429篇 |
2007年 | 247篇 |
2006年 | 183篇 |
2005年 | 232篇 |
2004年 | 226篇 |
2003年 | 262篇 |
2002年 | 176篇 |
2001年 | 260篇 |
2000年 | 149篇 |
1999年 | 176篇 |
1998年 | 195篇 |
1997年 | 156篇 |
1996年 | 181篇 |
1995年 | 242篇 |
1994年 | 216篇 |
1993年 | 108篇 |
1992年 | 170篇 |
1991年 | 58篇 |
1990年 | 65篇 |
1989年 | 154篇 |
1988年 | 50篇 |
1987年 | 52篇 |
1986年 | 68篇 |
1985年 | 216篇 |
1984年 | 172篇 |
1983年 | 135篇 |
1982年 | 157篇 |
1981年 | 214篇 |
1980年 | 62篇 |
1979年 | 44篇 |
1978年 | 47篇 |
1977年 | 45篇 |
1976年 | 39篇 |
1975年 | 37篇 |
1974年 | 42篇 |
1972年 | 33篇 |
1971年 | 30篇 |
1970年 | 32篇 |
排序方式: 共有7805条查询结果,搜索用时 15 毫秒
131.
The Lunar Gravity Ranging System for the Gravity Recovery and Interior Laboratory (GRAIL) Mission 总被引:1,自引:0,他引:1
William M. Klipstein Bradford W. Arnold Daphna G. Enzer Alberto A. Ruiz Jeffrey Y. Tien Rabi T. Wang Charles E. Dunn 《Space Science Reviews》2013,178(1):57-76
The Lunar Gravity Ranging System (LGRS) flying on NASA’s Gravity Recovery and Interior Laboratory (GRAIL) mission measures fluctuations in the separation between the two GRAIL orbiters with sensitivity below 0.6 microns/Hz1/2. GRAIL adapts the mission design and instrumentation from the Gravity Recovery and Climate Experiment (GRACE) to a make a precise gravitational map of Earth’s Moon. Phase measurements of Ka-band carrier signals transmitted between spacecraft with line-of-sight separations between 50 km to 225 km provide the primary observable. Measurements of time offsets between the orbiters, frequency calibrations, and precise orbit determination provided by the Global Positioning System on GRACE are replaced by an S-band time-transfer cross link and Deep Space Network Doppler tracking of an X-band radioscience beacon and the spacecraft telecommunications link. Lack of an atmosphere at the Moon allows use of a single-frequency link and elimination of the accelerometer compared to the GRACE instrumentation. This paper describes the implementation, testing and performance of the instrument complement flown on the two GRAIL orbiters. 相似文献
132.
We present up-to-date evolutionary models of low-mass stars, from M0.6 M down to the hydrogen burning minimum mass, using recent equation of state and synthetic spectra calculations. Comparison is made with observed luminosity function for these objects. We also present implications for the dark-matter distribution in the galactic halo. 相似文献
133.
Klumpar D.M. Möbius E. Kistler L.M. Popecki M. Hertzberg E. Crocker K. Granoff M. Tang Li Carlson C.W. McFadden J. Klecker B. Eberl F. Künneth E. Kästle H. Ertl M. Peterson W.K. Shelly E.G. Hovestadt D. 《Space Science Reviews》2001,98(1-2):197-219
The Time-of-flight Energy Angle Mass Spectrograph (TEAMS) is being flown on the FAST Small Explorer mission to measure the 3-dimensional distribution function of the major ion species present in the lower magnetosphere. The instrument is similar to time-of-flight plasma analyzer systems that have been designed and planned for flight as CODIF (COmposition and DIstribution Function analyzer) on the four European Space Agency Cluster-II spacecraft and, as ESIC (Equator-S Ion Composition instrument) on Equator-S. This instrument allows the 3-dimensional distribution functions of individual ion species to be determined within
spin period (2.5 s). Two-dimensional distributions are measured in 80 ms. These capabilities are crucial for the study of selective energization processes in the auroral regions of the magnetosphere. The design, operational characteristics, and test and calibration results for this instrument are presented. The sensor consists of a toroidal top-hat electrostatic analyzer with instantaneous acceptance of ions over 360° in polar angle. After post-acceleration of the incoming ions by up to 25 kV, a time-of-flight mass spectrograph discriminates the individual species. It has been demonstrated through calibration that the instrument can easily separate H+, He2+, He+, O+ and, for energies after post-acceleration of > 20 keV, even O2
+ molecules. On-board mass discrimination and the internal accumulation of several distinct data quantities combined with the spacecraft's flexible telemetry formatting allow for instrument data rates from 7.8 kb s–1 to 315 kb s–1 to be telemetered to ground through the FAST centralized Instrument Data Processor. 相似文献
134.
T.E. Moore M.O. Chandler M.-C. Fok B.L. Giles D.C. Delcourt J.L. Horwitz C.J. Pollock 《Space Science Reviews》2001,95(1-2):555-568
The discovery of terrestrial O+ and other heavy ions in magnetospheric hot plasmas, combined with the association of energetic ionospheric outflows with geomagnetic activity, led to the conclusion that increasing geomagnetic activity is responsible for filling the magnetosphere with ionospheric plasma. Recently it has been discovered that a major source of ionospheric heavy ion plasma outflow is responsive to the earliest impact of coronal mass ejecta upon the dayside ionosphere. Thus a large increase in ionospheric outflows begins promptly during the initial phase of geomagnetic storms, and is already present during the main phase development of such storms. We hypothesize that enhancement of the internal source of plasma actually supports the transition from substorm enhancements of aurora to storm-time ring current development in the inner magnetosphere. Other planets known to have ring current-like plasmas also have substantial internal sources of plasma, notably Jupiter and Saturn. One planet having a small magnetosphere, but very little internal source of plasma, is Mercury. Observations suggest that Mercury has substorms, but are ambiguous with regard to the possibility of magnetic storms of the planet. The Messenger mission to Mercury should provide an interesting test of our hypothesis. Mercury should support at most a modest ring current if its internal plasma source is as small as is currently believed. If substantiated, this hypothesis would support a general conclusion that the magnetospheric inflationary response is a characteristic of magnetospheres with substantial internal plasma sources. We quantitatively define this hypothesis and pose it as a problem in comparative magnetospheres. 相似文献
135.
Structure of a two-phase flow of boiling water at low-head adiabatic efflux through the laval nozzle
The critical flow conditions and structural forms of a two-phase flow that is formed during water efflux from the region of moderate and low pressures into a rarefied medium are analyzed. The difference in the structural forms of a flow realized at the low-head efflux from the structure of a flow occurring in the fluid flow with moderate and high initial pressures is established. The critical pressure differential characterizing the establishment of the maximum flowrate is determined and the decisive influence of turbulence on the vapor phase generation and flow conditions of a two-phase medium is shown. 相似文献
136.
D. Koschny V. Dhiri K. Wirth J. Zender R. Solaz R. Hoofs R. Laureijs T.-M Ho B. Davidsson G. Schwehm 《Space Science Reviews》2007,128(1-4):167-188
ESA’s Rosetta mission was launched in March 2004 and is on its way to comet 67P/Churyumov-Gerasimenko, where it is scheduled
to arrive in summer 2014. It comprises a payload of 12 scientific instruments and a Lander. All instruments are provided by
Principal Investigators, which are responsible for their operations.
As for most ESA science missions, the ground segment of the mission consists of a Mission Operations Centre (MOC) and a Science
Operations Centre (SOC). While the MOC is responsible for all spacecraft-related aspects and the final uplink of all command
timelines to the spacecraft, the scientific operations of the instruments and the collection of the data and ingestion into
the Planetary Science Archive are coordinated by the SOC. This paper focuses on the tasks of the SOC and in particular on
the methodology and constraints to convert the scientific goals of the Rosetta mission to operational timelines. 相似文献
137.
We propose a method that makes it possible to obtain in the framework of linear approximation the exact formulas for the wave resistance of the channel walls with an arbitrary plane pattern in the first and subsequent interference zones. It is shown by a particular example of the sinusoidal pattern that the pressure wave interference may lead to the positive or negative resistance resonance. 相似文献
138.
J. Wicht M. Mandea F. Takahashi U. R. Christensen M. Matsushima B. Langlais 《Space Science Reviews》2007,132(2-4):261-290
Mariner 10 measurements proved the existence of a large-scale internal magnetic field on Mercury. The observed field amplitude,
however, is too weak to be compatible with typical convective planetary dynamos. The Lorentz force based on an extrapolation
of Mariner 10 data to the dynamo region is 10−4 times smaller than the Coriolis force. This is at odds with the idea that planetary dynamos are thought to work in the so-called
magnetostrophic regime, where Coriolis force and Lorentz force should be of comparable magnitude. Recent convective dynamo
simulations reviewed here seem to resolve this caveat. We show that the available convective power indeed suffices to drive
a magnetostrophic dynamo even when the heat flow though Mercury’s core–mantle boundary is subadiabatic, as suggested by thermal
evolution models. Two possible causes are analyzed that could explain why the observations do not reflect a stronger internal
field. First, toroidal magnetic fields can be strong but are confined to the conductive core, and second, the observations
do not resolve potentially strong small-scale contributions. We review different dynamo simulations that promote either or
both effects by (1) strongly driving convection, (2) assuming a particularly small inner core, or (3) assuming a very large
inner core. These models still fall somewhat short of explaining the low amplitude of Mariner 10 observations, but the incorporation
of an additional effect helps to reach this goal: The subadiabatic heat flow through Mercury’s core–mantle boundary may cause
the outer part of the core to be stably stratified, which would largely exclude convective motions in this region. The magnetic
field, which is small scale, strong, and very time dependent in the lower convective part of the core, must diffuse through
the stagnant layer. Here, the electromagnetic skin effect filters out the more rapidly varying high-order contributions and
mainly leaves behind the weaker and slower varying dipole and quadrupole components (Christensen in Nature 444:1056–1058,
2006). Messenger and BepiColombo data will allow us to discriminate between the various models in terms of the magnetic fields
spatial structure, its degree of axisymmetry, and its secular variation. 相似文献
139.
A. Sh. Dzhabrailov Yu. V. Klochkov S. S. Marchenko A. P. Nikolaev 《Russian Aeronautics (Iz VUZ)》2007,50(2):115-120
We demonstrate that it is possible to express each component of the displacement vector for the interior point of the finite element (FE) through all components of nodal unknowns in curvilinear coordinates. The effectiveness of the valid technique of vector approximation for displacement fields has been verified on an example. 相似文献
140.
金属间化合物TiAl(W,Si)合金的蠕变行为和机制 总被引:1,自引:0,他引:1
研究了 Ti-47Al-2 W-0.5 Si合金在 650~ 750℃区间的蠕变行为和变形机制。结果表明,合金 650℃蠕变寿命与施加应力之间符合线性的双对数关系,可用表达式 lgtf=10 lgR+30来描述。蠕变寿命与最小蠕变速率之间满足 Monkman-Grant关系的修正式。合金的比蠕变强度与抗热腐蚀镍基高温合金 K438G相当。在700℃变载荷下蠕变时具有与恒载荷下蠕变相类似的特征。 800℃长期时效粗化合金组织,降低蠕变寿命。位错滑移和形变孪生是合金蠕变的主要变形机制。 相似文献