Using the method of characteristics, the problem of breaking or non-breaking of waves is studied in a plane cylindrically or spherically symmetric flow of an ideal dissociating gas. It is investigated as to how the effects of dissociation and that of the wave front curvature influence the breaking or non-breaking of waves. In a symmetrical converging gas motion a remarkable difference between the behaviours of cylindrical and spherical waves is discovered. 相似文献
We measured the amount of visual movement judged consistent with translational head movement under normal and microgravity conditions. Subjects wore a virtual reality helmet in which the ratio of the movement of the world to the movement of the head (visual gain) was variable. Using the method of adjustment under normal gravity 10 subjects adjusted the visual gain until the visual world appeared stable during head movements that were either parallel or orthogonal to gravity. Using the method of constant stimuli under normal gravity, seven subjects moved their heads and judged whether the virtual world appeared to move “with” or “against” their movement for several visual gains. One subject repeated the constant stimuli judgements in microgravity during parabolic flight. The accuracy of judgements appeared unaffected by the direction or absence of gravity. Only the variability appeared affected by the absence of gravity. These results are discussed in relation to discomfort during head movements in microgravity. 相似文献
In this paper, the problems of the application and development of models of space debris when designing means of the anti-meteorite spacecraft protection are considered. The developed method enables us to calculate the resistance of design elements based on the conjugation of a modified spatial model of the distribution of space-debris particles and ballistic limit dependences for a calculated element. 相似文献
A method of modeling the total electron content (TEC) based on the semi-empirical ionospheric model developed in Irkutsk State University is suggested. Comparison with the Klobuchar model has shown that the proposed method provides a more accurate presentation of TEC. A conclusion is drawn that the use of this method for compensation of the ionospheric error in single-frequency navigation receivers would lead to a substantial increase in the accuracy of their positioning. 相似文献
The sopite syndrome is a poorly understood response to motion. Drowsiness and mood changes are the primary characteristics of the syndrome. The sopite syndrome can exist in isolation from more apparent symptoms such as nausea, can last long after nausea has subsided, and can debilitate some individuals. It is most likely a distinct syndrome from \"regular\" motion sickness or common fatigue, and is of potential concern in a variety of situations. The syndrome may be particularly hazardous in transportation settings where other performance challenges (e.g., sleep deprivation) are already present. It is also a potential concern in cases where illnesses such as sleep disorders or depression may interact with the syndrome and confuse diagnosis. 相似文献
Recent advances in materials technology have improved the performance capabilities of inflatable, flexible composite structures, which have increased their potential for use in numerous space applications. Space suits, which are comprised of flexible composite components, are a good example of the successful use of inflatable composite structures in space. Space suits employ inflatables technology to provide a stand alone spacecraft for astronauts during extra-vehicular activity. A natural extension of this application of inflatables technology is in orbital or planetary habitat structures. NASA Johnson Space Center (JSC) is currently investigating flexible composite structures deployed via inflation for use as habitats, transfer vehicles and depots for continued exploration of the Moon and Mars.
Inflatable composite structures are being investigated because they offer significant benefits over conventional structures for aerospace applications. Inflatable structures are flexible and can be packaged in smaller and more complex shaped volumes, which result in the selection of smaller launch vehicles which dramatically reduce launch costs. Inflatable composite structures are typically manufactured from materials that have higher strength to weight ratios than conventional systems and are therefore lower in mass. Mass reductions are further realized because of the tailorability of inflatable composite structures, which allow the strength of the system to be concentrated where needed. Flexible composite structures also tend to be more damage tolerant due to their “forgiveness” as compared to rigid mechanical systems. In addition, inflatables have consistently proven to be lower in both development and manufacturing costs.
Several inflatable habitat development programs are discussed with their increasing maturation toward use on a flight mission. Selected development programs being discussed include several NASA Langley Research Center habitat programs that were conducted in the 1960s, the Lawrence Livermore National Laboratory inflatable space station study, the NASA JSC deployable inflatable Lunar habitat study, and the inflatable Mars TransHab study and test program currently ongoing at NASA JSC. Relevant technology developments made by ILC Dover are also presented. 相似文献
Fluid and electrolyte shifts occuring during human spaceflight have been reported and investigated at the level of blood, cardio-vascular and renal responses. Very few data were available concerning the cerebral fluid and electrolyte adaptation to microgravity, even in animal models. It is the reason why we developed several studies focused on the effects of spaceflight (SLS-1 and SLS-2 programs, carried on NASA STS 40 and 56 missions, which were 9- and 14-day flights, respectively), on structural and functional features of choroid plexuses, organs which secrete 70–90 % of cerebrospinal fluid (CSF) and which are involved in brain homeostasis. Rats flown aboard space shuttles were sacrificed either in space (SLS-2 experiment, on flight day 13) or 4–8 hours after landing (SLS-1 and SLS-2 experiments). Quantitative autoradiography performed by microdensitometry and image analysis, showed that lateral and third ventricle choroid plexuses from rats flown for SLS-1 experiment demonstrated an increased number (about x 2) of binding sites to natriuretic peptides (which are known to be involved in mechanisms regulating CSF production). Using electron microscopy and immunocytochemistry, we studied the cellular response of choroid plexuses, which produce cerebrospinal fluid (CSF) in brain lateral, third and fourth ventricles. We demonstrated that spaceflight (SLS-2 experiment, inflight samples) induces changes in the choroidal cell structure (apical microvilli, kinocilia organization, vesicle accumulation) and protein distribution or expression (carbonic anhydrase II, water channels,…). These observations suggested a loss of choroidal cell polarity and a decrease in CSF secretion. Hindlimb-suspended rats displayed similar choroidal changes. All together, these results support the hypothesis of a modified CSF production in rats during long-term (9, 13 or 14 days) adaptations to microgravity. 相似文献
The nature of the changes of resistance to infection seems to be very important. Our studies indicate that different functions of natural killers could be depressed after the spaceflight. The decrease of the percentage of the lymphocytes that can bind target cells lead to the lowering of the “active” NK level and this can be resulted in the depression of total NK activity and lowering of resistance to viral and tumor antigens. The investigation of natural killer cells in cosmonauts before and after short and long-term spaceflights also revealed the important role of spaceflight duration, stress and individual immune reactivity. 相似文献
The control of water content and water movement in granular substrate-based plant root systems in microgravity is a complex problem. Improper water and oxygen delivery to plant roots has delayed studies of the effects of microgravity on plant development and the use of plants in physical and mental life support systems. Our international effort (USA, Russia and Bulgaria) has upgraded the plant growth facilities on the Mir Orbital Station (OS) and used them to study the full life cycle of plants. The Bulgarian-Russian-developed Svet Space Greenhouse (SG) system was upgraded on the Mir OS in 1996. The US developed Gas Exchange Measurement System (GEMS) greatly extends the range of environmental parameters monitored. The Svet-GEMS complex was used to grow a fully developed wheat crop during 1996. The growth rate and development of these plants compared well with earth grown plants indicating that the root zone water and oxygen stresses that have limited plant development in previous long-duration experiments have been overcome. However, management of the root environment during this experiment involved several significant changes in control settings as the relationship between the water delivery system, water status sensors, and the substrate changed during the growth cycles. 相似文献