首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5105篇
  免费   3篇
  国内免费   16篇
航空   2643篇
航天技术   1605篇
综合类   182篇
航天   694篇
  2021年   34篇
  2019年   30篇
  2018年   76篇
  2017年   42篇
  2016年   41篇
  2014年   78篇
  2013年   106篇
  2012年   124篇
  2011年   190篇
  2010年   116篇
  2009年   202篇
  2008年   206篇
  2007年   129篇
  2006年   99篇
  2005年   107篇
  2004年   117篇
  2003年   150篇
  2002年   188篇
  2001年   202篇
  2000年   98篇
  1999年   124篇
  1998年   157篇
  1997年   105篇
  1996年   141篇
  1995年   170篇
  1994年   148篇
  1993年   97篇
  1992年   125篇
  1991年   58篇
  1990年   65篇
  1989年   126篇
  1988年   60篇
  1987年   61篇
  1986年   53篇
  1985年   158篇
  1984年   124篇
  1983年   114篇
  1982年   117篇
  1981年   155篇
  1980年   59篇
  1979年   46篇
  1978年   58篇
  1977年   38篇
  1976年   41篇
  1975年   49篇
  1974年   43篇
  1972年   50篇
  1971年   48篇
  1970年   31篇
  1969年   33篇
排序方式: 共有5124条查询结果,搜索用时 76 毫秒
971.
A new summer temperature proxy was built for northern Fennoscandia in AD 1000–2004 using parameters of tree growth from a large region, extending from the Swedish Scandes to the Kola Peninsula. It was found that century-scale (55–140 year) cyclicity is present in this series during the entire time interval. This periodicity is highly significant and has a bi-modal structure, i.e. it consists of two oscillation modes, 55–100 year and 100–140 year variations. A comparison of the century-long variation in the northern Fennoscandian temperature proxy with the corresponding variations in Wolf numbers and concentration of cosmogenic 10Be in glacial ice shows that a probable cause of this periodicity is the modulation of regional climate by the secular solar cycle of Gleissberg. This is in line with the results obtained previously for a more limited part of the region (Finnish Lapland: 68–70° N, 20–30° E). Thus the reality of a link between long-term changes in solar activity and climate in Fennoscandia has been confirmed. Possible mechanisms of solar influence on the lower troposphere are discussed.  相似文献   
972.
Performance of efficient single-person cardiopulmonary resuscitation (CPR) is vital to maintain cardiac and cerebral perfusion during the 2–4 min it takes for deployment of advanced life support during a space mission. The aim of the present study was to investigate potential differences in upper body muscle activity during CPR performance at terrestrial gravity (+1Gz) and in simulated microgravity (μG). Muscle activity of the triceps brachii, erector spinae, rectus abdominis and pectoralis major was measured via superficial electromyography in 20 healthy male volunteers. Four sets of 30 external chest compressions (ECCs) were performed on a mannequin. Microgravity was simulated using a body suspension device and harness; the Evetts–Russomano (ER) method was adopted for CPR performance in simulated microgravity. Heart rate and perceived exertion via Borg scores were also measured. While a significantly lower depth of ECCs was observed in simulated microgravity, compared with +1Gz, it was still within the target range of 40–50 mm. There was a 7.7% decrease of the mean (±SEM) ECC depth from 48 ± 0.3 mm at +1Gz, to 44.3 ± 0.5 mm during microgravity simulation (p < 0.001). No significant difference in number or rate of compressions was found between the two conditions. Heart rate displayed a significantly larger increase during CPR in simulated microgravity than at +1Gz, the former presenting a mean (±SEM) of 23.6 ± 2.91 bpm and the latter, 76.6 ± 3.8 bpm (p < 0.001). Borg scores were 70% higher post-microgravity compressions (17 ± 1) than post +1Gz compressions (10 ± 1) (p < 0.001). Intermuscular comparisons showed the triceps brachii to have significantly lower muscle activity than each of the other three tested muscles, in both +1Gz and microgravity. As shown by greater Borg scores and heart rate increases, CPR performance in simulated microgravity is more fatiguing than at +1Gz. Nevertheless, no significant difference in muscle activity between conditions was found, a result that is favourable for astronauts, given the inevitable muscular and cardiovascular deconditioning that occurs during space travel.  相似文献   
973.
974.
This paper reports the main characteristics of the deep space transponder (DST) equipment that has been designed, developed and tested by Thales Alenia Space—Italy (TAS-I) for the European Space Agency (ESA) BepiColombo mission to Mercury.  相似文献   
975.
The Mars Science Laboratory (MSL) has an instrument package capable of making measurements of past and present environmental conditions. The data generated may tell us if Mars is, or ever was, able to support life. However, the knowledge of Mars' past history and the geological processes most likely to preserve a record of that history remain sparse and, in some instances, ambiguous. Physical, chemical, and geological processes relevant to biosignature preservation on Earth, especially under conditions early in its history when microbial life predominated, are also imperfectly known. Here, we present the report of a working group chartered by the Co-Chairs of NASA's MSL Project Science Group, John P. Grotzinger and Michael A. Meyer, to review and evaluate potential for biosignature formation and preservation on Mars. Orbital images confirm that layered rocks achieved kilometer-scale thicknesses in some regions of ancient Mars. Clearly, interplays of sedimentation and erosional processes govern present-day exposures, and our understanding of these processes is incomplete. MSL can document and evaluate patterns of stratigraphic development as well as the sources of layered materials and their subsequent diagenesis. It can also document other potential biosignature repositories such as hydrothermal environments. These capabilities offer an unprecedented opportunity to decipher key aspects of the environmental evolution of Mars' early surface and aspects of the diagenetic processes that have operated since that time. Considering the MSL instrument payload package, we identified the following classes of biosignatures as within the MSL detection window: organism morphologies (cells, body fossils, casts), biofabrics (including microbial mats), diagnostic organic molecules, isotopic signatures, evidence of biomineralization and bioalteration, spatial patterns in chemistry, and biogenic gases. Of these, biogenic organic molecules and biogenic atmospheric gases are considered the most definitive and most readily detectable by MSL.  相似文献   
976.
The aim of this work was to analyze the possible alteration of thyrotropin (TSH) receptors in microgravity, which could explain the absence of thyroid cell proliferation in the space environment. Several forms of the TSH receptor are localized on the plasma membrane associated with caveolae and lipid rafts. The TSH regulates the fluidity of the cell membrane and the presence of its receptors in microdomains that are rich in sphingomyelin and cholesterol. TSH also stimulates cyclic adenosine monophosphate (cAMP) accumulation and cell proliferation. Reported here are the results of an experiment in which the FRTL-5 thyroid cell line was exposed to microgravity during the Texus-44 mission (launched February 7, 2008, from Kiruna, Sweden). When the parabolic flight brought the sounding rocket to an altitude of 264?km, the culture media were injected with or without TSH in the different samples, and weightlessness prevailed on board for 6 minutes and 19 seconds. Control experiments were performed, in parallel, in an onboard 1g centrifuge and on the ground in Kiruna laboratory. Cell morphology and function were analyzed. Results show that in microgravity conditions the cells do not respond to TSH treatment and present an irregular shape with condensed chromatin, a modification of the cell membrane with shedding of the TSH receptor in the culture medium, and an increase of sphingomyelin-synthase and Bax proteins. It is possible that real microgravity induces a rearrangement of specific sections of the cell membrane, which act as platforms for molecular receptors, thus influencing thyroid cell function in astronauts during space missions.  相似文献   
977.
The RNA-world theory hypothesizes that early Earth life was based on the RNA molecule. However, the notion that ribose, the sugar in RNA, is unstable still casts a serious doubt over this theory. Recently, it has been found that the silicate-mediated formose reaction facilitates the stabilization of ribose. Using accurate quantum chemical calculations, we determined the relative stability of the silicate complexes of arabinose, lyxose, ribose, and xylose with the intent to determine which would form predominantly from a formose-like reaction. Five stereoisomers were investigated for each complex. The stereoisomers of 2:1 ribose-silicate are the more stable ones, to the extent that the least stable of these is even more stable than the most stable stereoisomer of the other 2:1 sugar-silicate complexes. Thus, thermodynamically, a formose-like reaction in the presence of silicate minerals should preferentially form the silicate complex of ribose over the silicate complex of arabinose, lyxose, and xylose.  相似文献   
978.
979.
In this paper, one of the most possible methods for calculations of ejector devices equipped with the cylindrical mixing chambers is considered; the method is based on averaging the flow parameters at the chamber inlet. We present the calculation results and their comparison with the earlier published data, as well as the quantitative assessment of this method and feasibilities of its use for different technical devices embodying the concept of ejection.  相似文献   
980.
未来十年,支线发动机维修企业将面对新机型投入运营和老旧飞机淘汰等诸多状况。在此期间,将有三种新支线喷气投入商业运营:以SaM146为动力的苏霍伊超级喷气机SSJ100;以普惠公司的PW1000GTF发动机为动力的三  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号