全文获取类型
收费全文 | 4467篇 |
免费 | 13篇 |
国内免费 | 7篇 |
专业分类
航空 | 2086篇 |
航天技术 | 1604篇 |
综合类 | 16篇 |
航天 | 781篇 |
出版年
2021年 | 44篇 |
2019年 | 25篇 |
2018年 | 104篇 |
2017年 | 73篇 |
2016年 | 76篇 |
2015年 | 39篇 |
2014年 | 130篇 |
2013年 | 138篇 |
2012年 | 143篇 |
2011年 | 193篇 |
2010年 | 127篇 |
2009年 | 216篇 |
2008年 | 293篇 |
2007年 | 129篇 |
2006年 | 107篇 |
2005年 | 138篇 |
2004年 | 117篇 |
2003年 | 153篇 |
2002年 | 89篇 |
2001年 | 153篇 |
2000年 | 74篇 |
1999年 | 99篇 |
1998年 | 120篇 |
1997年 | 87篇 |
1996年 | 90篇 |
1995年 | 124篇 |
1994年 | 121篇 |
1993年 | 64篇 |
1992年 | 95篇 |
1991年 | 53篇 |
1990年 | 36篇 |
1989年 | 88篇 |
1988年 | 40篇 |
1987年 | 42篇 |
1986年 | 36篇 |
1985年 | 96篇 |
1984年 | 86篇 |
1983年 | 75篇 |
1982年 | 86篇 |
1981年 | 118篇 |
1980年 | 41篇 |
1979年 | 36篇 |
1978年 | 32篇 |
1977年 | 25篇 |
1976年 | 28篇 |
1975年 | 22篇 |
1974年 | 22篇 |
1973年 | 23篇 |
1972年 | 23篇 |
1971年 | 21篇 |
排序方式: 共有4487条查询结果,搜索用时 15 毫秒
71.
C.J. Hailey T. Aramaki S.E. Boggs P.v. Doetinchem H. Fuke F. Gahbauer J.E. Koglin N. Madden S.A.I. Mognet R. Ong T. Yoshida T. Zhang J.A. Zweerink 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
The General Antiparticle Spectrometer (GAPS) is a new approach to the indirect detection of dark matter. It relies on searching for primary antideuterons produced in the annihilation of dark matter in the galactic halo. Low energy antideuterons produced through Standard Model processes, such as collisions of cosmic-rays with interstellar baryons, are greatly suppressed compared to primary antideuterons. Thus a low energy antideuteron search provides a clean signature of dark matter. In GAPS antiparticles are slowed down and captured in target atoms. The resultant exotic atom deexcites with the emission of X-rays and annihilation pions, protons and other particles. A tracking geometry allows for the detection of the X-rays and particles, providing a unique signature to identify the mass of the antiparticle. A prototype detector was successfully tested at the KEK accelerator in 2005, and a prototype GAPS balloon flight is scheduled for 2011. This will be followed by a full scale experiment on a long duration balloon from Antarctica in 2014. We discuss the status and future plans for GAPS. 相似文献
72.
W. Menn O. Adriani G.C. Barbarino G.A. Bazilevskaya R. Bellotti M. Boezio E.A. Bogomolov L. Bonechi M. Bongi V. Bonvicini S. Borisov S. Bottai A. Bruno F. Cafagna D. Campana R. Carbone P. Carlson M. Casolino G. Castellini L. Consiglio M.P. De Pascale C. De Santis N. De Simone V. Di Felice A.M. Galper W. Gillard L. Grishantseva G. Jerse A.V. Karelin S.V. Koldashov S.Y. Krutkov A.N. Kvashnin A. Leonov V. Malakhov V. Malvezzi L. Marcelli A.G. Mayorov V.V. Mikhailov E. Mocchiutti A. Monaco N. Mori N. Nikonov G. Osteria F. Palma P. Papini M. Pearce P. Picozza C. Pizzolotto M. Ricci S.B. Ricciarini 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
73.
J.R. Souza W.D. Asevedo Jr. P.C.P. dos Santos A. Petry G.J. Bailey I.S. Batista M.A. Abdu 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
We describe a new version of the Parameterized Regional Ionospheric Model (PARIM) which has been modified to include the longitudinal dependences. This model has been reconstructed using multidimensional Fourier series. To validate PARIM results, the South America maps of critical frequencies for the E (foE) and F (foF2) regions were compared with the values calculated by Sheffield Plasmasphere-Ionosphere Model (SUPIM) and IRI representations. PARIM presents very good results, the general characteristics of both regions, mainly the presence of the equatorial ionization anomaly, were well reproduced for equinoctial conditions of solar minimum and maximum. The values of foF2 and hmF2 recorded over Jicamarca (12°S; 77°W; dip lat. 1°N; mag. declination 0.3°) and sites of the conjugate point equatorial experiment (COPEX) campaign Boa Vista (2.8°N; 60.7°W; dip lat. 11.4°; mag. declination −13.1°), Cachimbo (9.5°S; 54.8°W; dip lat. −1.8°; mag. declination −15.5°), and Campo Grande (20.4°S; 54.6°W; dip lat. −11.1°; mag. declination −14.0°) have been used in this work. foF2 calculated by PARIM show good agreement with the observations, except during morning over Boa Vista and midnight-morning over Campo Grande. Some discrepancies were also found for the F-region peak height (hmF2) near the geomagnetic equator during times of F3 layer occurrences. IRI has underestimated both foF2 and hmF2 over equatorial and low latitude sectors during evening-nighttimes, except for Jicamarca where foF2 values were overestimated. 相似文献
74.
S.A. Melachroinos F.G. Lemoine N.P. Zelensky D.D. Rowlands S.B. Luthcke O. Bordyugov 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
We compute a series of Jason-2 GPS and SLR/DORIS-based orbits using ITRF2005 and the std0905 standards ( Lemoine et al., 2010). Our GPS and SLR/DORIS orbit data sets span a period of 2 years from cycle 3 (July 2008) to cycle 74 (July 2010). We extract the Jason-2 orbit frame translational parameters per cycle by the means of a Helmert transformation between a set of reference orbits and a set of test orbits. We compare the annual terms of these time-series to the annual terms of two different geocenter motion models where biases and trends have been removed. Subsequently, we include the annual terms of the modeled geocenter motion as a degree-1 loading displacement correction to the GPS and SLR/DORIS tracking network of the POD process. Although the annual geocenter motion correction would reflect a stationary signal in time, under ideal conditions, the whole geocenter motion is a non-stationary process that includes secular trends. Our results suggest that our GSFC Jason-2 GPS-based orbits are closely tied to the center of mass (CM) of the Earth consistent with our current force modeling, whereas GSFC’s SLR/DORIS-based orbits are tied to the origin of ITRF2005, which is the center of figure (CF) for sub-secular scales. We quantify the GPS and SLR/DORIS orbit centering and how this impacts the orbit radial error over the globe, which is assimilated into mean sea level (MSL) error, from the omission of the annual term of the geocenter correction. We find that for the SLR/DORIS std0905 orbits, currently used by the oceanographic community, only the negligence of the annual term of the geocenter motion correction results in a – 4.67 ± 3.40 mm error in the Z-component of the orbit frame which creates 1.06 ± 2.66 mm of systematic error in the MSL estimates, mainly due to the uneven distribution of the oceans between the North and South hemisphere. 相似文献
75.
R. Sridharan Tirtha Pratim Das S.M. Ahmed Gogulapati Supriya Anil Bhardwaj J.A. Kamalakar 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
In the past, clues on the potential radiogenic activity of the lunar interior have been obtained from the isotopic composition of noble gases like Argon. Excess Argon (40) relative to Argon (36), as compared to the solar wind composition, is generally ascribed to the radiogenic activity of the lunar interior. Almost all the previous estimates were based on, ‘on-the-spot’ measurements from the landing sites. Relative concentration of the isotopes of 40Ar and 36Ar along a meridian by the Chandra’s Altitudinal Composition Explorer (CHACE) experiment, on the Moon Impact Probe (MIP) of India’s first mission to Moon, has independently yielded clues on the possible spatial heterogeneity in the radiogenic activity of the lunar interior in addition to providing indicative ‘antiquity’ of the lunar surface along the ground track over the near side of the moon. These results are shown to broadly corroborate the independent topography measurements by the Lunar Laser Ranging Instrument (LLRI) in the main orbiter Chandrayaan-1. The unique combination of these experiments provided high spatial resolution data while indicating the possible close linkages between the lunar interior and the lunar ambience. 相似文献
76.
J.P. Pabari Y.B. Acharya U.B. Desai S.N. Merchant 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
It is known that a wireless sensor network uses some sort of sensors to detect a physical quantity of interest, in general. The wireless sensor network is a potential tool for exploring the difficult-to-access area on the earth and the concept may be extended to space applications in future. Recently, lunar water has been detected by a few lunar missions using remote sensing techniques. The lunar water is expected to be in the form of ice at very low temperatures of permanently dark regions on the moon. To support the remote observations and also to find out potential ice bearing sites on the moon, in-situ measurement of the lunar ice is essential. However, a rover may not be able to reach the permanently shadowed regions due to terrain irregularity. One possibility to access such areas is to use a wireless sensor network on the lunar surface. 相似文献
77.
N. Gopalswamy H. Xie P. Mäkelä S. Yashiro S. Akiyama W. Uddin A.K. Srivastava N.C. Joshi R. Chandra P.K. Manoharan K. Mahalakshmi V.C. Dwivedi R. Jain A.K. Awasthi N.V. Nitta M.J. Aschwanden D.P. Choudhary 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
Employing coronagraphic and EUV observations close to the solar surface made by the Solar Terrestrial Relations Observatory (STEREO) mission, we determined the heliocentric distance of coronal mass ejections (CMEs) at the starting time of associated metric type II bursts. We used the wave diameter and leading edge methods and measured the CME heights for a set of 32 metric type II bursts from solar cycle 24. We minimized the projection effects by making the measurements from a view that is roughly orthogonal to the direction of the ejection. We also chose image frames close to the onset times of the type II bursts, so no extrapolation was necessary. We found that the CMEs were located in the heliocentric distance range from 1.20 to 1.93 solar radii (Rs), with mean and median values of 1.43 and 1.38 Rs, respectively. We conclusively find that the shock formation can occur at heights substantially below 1.5 Rs. In a few cases, the CME height at type II onset was close to 2 Rs. In these cases, the starting frequency of the type II bursts was very low, in the range 25–40 MHz, which confirms that the shock can also form at larger heights. The starting frequencies of metric type II bursts have a weak correlation with the measured CME/shock heights and are consistent with the rapid decline of density with height in the inner corona. 相似文献
78.
N.C. Joshi W. Uddin A.K. Srivastava R. Chandra N. Gopalswamy P.K. Manoharan M.J. Aschwanden D.P. Choudhary R. Jain N.V. Nitta H. Xie S. Yashiro S. Akiyama P. Mäkelä P. Kayshap A.K. Awasthi V.C. Dwivedi K. Mahalakshmi 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
79.
J.S. Mandeep 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
Fade duration database was built to enhance the study of propagation characterises in the Equatorial region. The data was measured via a beacon receiver Ku-band whereby the antenna was directed to a SUPERBIRD-C2 satellite at 12.255 GHz. The performance of the measured data has been compared with ITU-R model, Kormanyos et al. and Paulson–Gibbins. The results show that the Paulson–Gibbins fits well with measured data with a low RMS error of 0.2 dB. The number of statistics available for the equatorial is small and the periods of measurement are short compared to those for temperate regions. 相似文献
80.
Malini Aggarwal H.P. Joshi K.N. Iyer Y.S. Kwak 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
In this paper, response of low latitude ionosphere to a moderate geomagnetic storm of 7–8 May 2005 (SSC: 1920 UT on 7 May with Sym-H minimum, ∼−112 nT around 1600 UT on 8 May) has been investigated using the GPS measurements from a near EIA crest region, Rajkot (Geog. 22.29°N, 70.74°E, Geomag.14°), India. We found a decrease in total electron content (TEC) in 12 h after the onset of the storm, an increase during and after 6 h of Sym-H deep minimum with a decrease below its usual-day level on the second day during the recovery phase of the storm. On 8 May, an increase of TEC is observed after sunset and during post-midnight hours (maximum up to 170%) with the formation of ionospheric plasma bubbles followed by a nearly simultaneous onset of scintillations at L-band frequencies following the time of rapid decrease in Sym-H index (−30 nT/h around 1300 UT). 相似文献