首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36篇
  免费   0篇
航空   10篇
航天技术   17篇
航天   9篇
  2019年   2篇
  2017年   2篇
  2014年   1篇
  2013年   6篇
  2011年   4篇
  2009年   2篇
  2006年   1篇
  2005年   2篇
  2003年   1篇
  2001年   1篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1993年   3篇
  1992年   1篇
  1989年   1篇
  1987年   1篇
  1984年   1篇
  1972年   2篇
  1971年   1篇
排序方式: 共有36条查询结果,搜索用时 15 毫秒
11.
Potatoes (Solanum tuberosum) have a strong potential as a useful crop species in a functioning CELSS. The cultivar Denali has produced 37.5 g m-2 d-1 when grown for 132 days with the first 40 days under a 12-h photoperiod and a light:dark temperature cycle of 20 degrees C:16 degrees C, and then 92 days under continuous irradiance and a temperature of 16 degrees C. Irradiance was at 725 micromoles m-2 s-1 PPF and carbon dioxide at 1000 micromoles mol-1. The dried tubers had 82% carbohydrates, 9% protein and 0.6% fat. Other studies have shown that carbon dioxide supplementation (1000 micromoles mol-1) is of significant benefit under 12-h irradiance but less benefit under 24 h irradiance. Irradiance cycles of 60 minutes light and 30 minutes dark caused a reduction of more than 50% in tuber weight compared to cycles of 16 h light and 8 h dark. A diurnal temperature change of 22 degrees C for the 12-h light period to 14 degrees C during the 12-h dark period gave increased yields of 30% and 10% for two separate cultivars, compared with plants grown under a constant 18 degrees C temperature. Cultivar screening under continuous irradiance and elevated temperatures (28 degrees C) for 8 weeks of growth indicated that the cvs Haig, Denali, Atlantic, Desiree and Rutt had the best potential for tolerance to these conditions. Harvesting of tubers from plants at weekly intervals, beginning at 8 weeks after planting, did not increase yield over a single final harvest. Spacing of plants on 0.055 centers produced greater yield per m2 than spacing at 0.11 or 0.22 m2. Plants maintained 0.33 meters apart (0.111 m2 per plant) in beds produced the same yields when separated by dividers in the root matrix as when no separation was made.  相似文献   
12.
Inflatable/deployable structures are under consideration as habitats for future Lunar surface science operations. The use of non-traditional structural materials combined with the need to maintain a safe working environment for extended periods in a harsh environment has led to the consideration of an integrated structural health management system for future habitats, to ensure their integrity. This article describes recent efforts to develop prototype sensing technologies and new self-healing materials that address the unique requirements of habitats comprised mainly of soft goods. A new approach to detecting impact damage is discussed, using addressable flexible capacitive sensing elements and thin film electronics in a matrixed array. Also, the use of passive wireless sensor tags for distributed sensing is discussed, wherein the need for on-board power through batteries or hardwired interconnects is eliminated. Finally, the development of a novel, microencapuslated self-healing elastomer with applications for inflatable/deployable habitats is reviewed.  相似文献   
13.
Recent successes in the effort to miniaturize spacecraft components using MEMS technology, integrated passive components, and low power electronics have driven the need for very low power, low profile, low mass micro-power sources for micro/nanospacecraft applications. Recent work at JPL has focused upon developing thin film/micro-batteries compatible with temperature sensitive substrates. A process to prepare crystalline LiCoO2 films with RF sputtering and moderate (<700°C) annealing temperature has been developed. Thin film batteries with cathode films prepared with this process have specific capacities approaching the practical limit for LiCoO2, with acceptable rate capabilities and discharge voltage profiles. Solid-state micro-scale batteries have also been fabricated with feature sizes on the order of 50 microns  相似文献   
14.
Further cost reduction of the fiber optic gyroscope is necessary to meet the economic requirements of land navigation systems. Previous concentration was on the reduction of the number of splices and component improvements in the open-loop minimum configuration. Now non-essential components and splices are eliminated. The source-detector coupler is not part of the Sagnac interferometer, and serves solely to direct light from the interferometer into the output photodetector. Many commercial laser diodes incorporate a back-facet photodetector to monitor laser intensity. The signal returned from the Sagnac traverses the laser, and can be detected at this photodetector. The gyro signal can be distinguished from the laser signal by the bias modulation applied in the interferometer. Configuring a gyro in this manner eliminates a directional coupler and the separate photodetector, as well as up to two fiber splices in an all-fiber gyroscope. A production, open-loop fiber optic gyroscope has been modified to demonstrate this principle. The gyroscope exhibits performance comparable to the conventional minimum configuration  相似文献   
15.
COMPTEL is the first imaging telescope to explore the MeV gamma-ray range (0.7 to 30 MeV). At present, it is performing a complete sky survey. In later phases of the mission selected celestial objects will be studied in more detail. The data from the first year of the mission have demonstrated that COMPTEL performs very well. First sky maps of the inner part of the Galaxy clearly identify the plane as a bright MeV-source (probably due to discrete sources as well as diffuse radiation). The Crab and Vela pulsar lightcurves have been measured with unprecedented accuracy. The quasars 3C273 and 3C279 have been seen for the first time at MeV energies. Both quasars show a break in their energy spectra in the COMPTEL energy range. The 1.8 MeV line from radioactive 26A1 has been detected from the central region of the Galaxy and a first sky map of the inner part of the Galaxy has been obtained in the light of this line. Upper limits to gamma-ray line emission at 847 keV and 1.238 MeV from SN 1991T have been derived. Upper limits to the interstellar gamma-ray emissivity have been determined at MeV-energies. Several cosmic gamma-ray bursts within the field-of-view have been located with an accuracy of about 1°. On 1991 June 9, 11 and 15, COMPTEL observed gamma-ray emission (continuum and line) from three solar flares. Also neutrons were detected from the June 9 and June 15 flares.  相似文献   
16.
Pulsar measurements performed by the experiment COMPTEL, aboard the Compton Gamma Ray Observatory, are described. The main results refer to the Crab and Vela pulsars whose pulse shape characteristics are given in some detail and light curves are compared with those above 50 MeV, as observed by the COS-B satellite. No other gamma-ray pulsars have been detected to date by COMPTEL, the upper limit on the pulsed signal from Geminga being compatible with indications by other experiments.  相似文献   
17.
Hypersonic vehicles are receiving increased attention within the aerospace community due to their high cruise speed and long-range capabilities. In this paper, a modified Sequential Approximate Optimization method is proposed for an optimized aerodynamic design of a hypersonic vehicle. As part of this approach, a constrained experimental design method is developed to handle the constraints more efficiently. A radial basis function is used to surrogate time-consuming CFD analysis. An efficient and more robust numerical mesh morphing scheme for the hypersonic vehicle is developed for the generation of high-quality meshes. Within this paper, a novel adaptive infilling strategy is proposed which uses an inaccurate search technique coupled with an elite archive. This allows the location of a more promising sample region and hence improves the surrogate accuracy, thereby further enhancing the optimization efficiency. A hypersonic vehicle aerodynamic design problem is solved using the proposed approach and satisfactory results are obtained at much lower computational costs. The lift-to-drag ratio is increased by 23.8% when compared with the base configuration while also satisfying the volume and lift constraints. The pressure and Mach contours have been compared with those of the base configuration and the results demonstrate the strength of the optimized configuration. The modified sequential approximate optimization for designing an improved hypersonic vehicle is worth referencing in future work.  相似文献   
18.
In computer codes used to estimate the aircrew radiation exposure from galactic cosmic radiation, a quiet sun model is usually assumed. A revised computer code (PCAIRE ver. 8.0f) is used to calculate the impact of noisy sun conditions on aircrew radiation exposure. The revised code incorporates the effect of solar storm activity, which can perturb the geomagnetic field lines, altering cutoff rigidities and hence the shielding capability of the Earth’s magnetic field. The effect of typical solar storm conditions on aircrew radiation exposure is shown to be minimal justifying the usual assumptions.  相似文献   
19.
Earlier studies have shown that an orbit prediction accuracy of 20 arc sec ground station pointing error for 1–2 day predictions was achievable for low Earth orbit (LEO) debris using two passes of debris laser ranging (DLR) data from a single station, separated by about 24 h. The accuracy was determined by comparing the predicted orbits with subsequent tracking data from the same station. This accuracy statement might be over-optimistic for other parts of orbit far away from the station. This paper presents the achievable orbit prediction accuracy using satellite laser ranging (SLR) data of Starlette and Larets under a similar data scenario as that of DLR. The SLR data is corrupted with random errors of 1 m standard deviation so that its accuracy is similar to that of DLR data. The accurate ILRS Consolidated Prediction Format orbits are used as reference to compute the orbit prediction errors. The study demonstrates that accuracy of 20 arc sec for 1–2 day predictions is achievable.  相似文献   
20.
The ultraviolet spectrograph instrument on the Juno mission (Juno-UVS) is a long-slit imaging spectrograph designed to observe and characterize Jupiter’s far-ultraviolet (FUV) auroral emissions. These observations will be coordinated and correlated with those from Juno’s other remote sensing instruments and used to place in situ measurements made by Juno’s particles and fields instruments into a global context, relating the local data with events occurring in more distant regions of Jupiter’s magnetosphere. Juno-UVS is based on a series of imaging FUV spectrographs currently in flight—the two Alice instruments on the Rosetta and New Horizons missions, and the Lyman Alpha Mapping Project on the Lunar Reconnaissance Orbiter mission. However, Juno-UVS has several important modifications, including (1) a scan mirror (for targeting specific auroral features), (2) extensive shielding (for mitigation of electronics and data quality degradation by energetic particles), and (3) a cross delay line microchannel plate detector (for both faster photon counting and improved spatial resolution). This paper describes the science objectives, design, and initial performance of the Juno-UVS.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号