首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   307篇
  免费   1篇
  国内免费   10篇
航空   186篇
航天技术   84篇
综合类   1篇
航天   47篇
  2020年   2篇
  2019年   3篇
  2018年   3篇
  2017年   4篇
  2016年   3篇
  2015年   2篇
  2014年   15篇
  2013年   8篇
  2012年   13篇
  2011年   31篇
  2010年   9篇
  2009年   16篇
  2008年   22篇
  2007年   12篇
  2006年   8篇
  2005年   8篇
  2004年   14篇
  2003年   6篇
  2001年   9篇
  2000年   7篇
  1999年   11篇
  1998年   7篇
  1997年   2篇
  1996年   8篇
  1995年   5篇
  1994年   4篇
  1993年   7篇
  1992年   7篇
  1991年   5篇
  1990年   7篇
  1989年   3篇
  1988年   4篇
  1987年   2篇
  1986年   5篇
  1985年   5篇
  1984年   5篇
  1983年   6篇
  1982年   4篇
  1981年   3篇
  1979年   2篇
  1978年   3篇
  1976年   2篇
  1975年   4篇
  1974年   2篇
  1973年   2篇
  1972年   1篇
  1969年   1篇
  1968年   1篇
  1967年   1篇
  1965年   1篇
排序方式: 共有318条查询结果,搜索用时 156 毫秒
171.
Energetic particles constitute an important component of the heliospheric plasma environment. They range from solar energetic particles in the inner heliosphere to the anomalous cosmic rays accelerated at the interface of the heliosphere with the local interstellar medium. Although stochastic acceleration by fluctuating electric fields and processes associated with magnetic reconnection may account for some of the particle populations, the majority are accelerated by the variety of shock waves present in the solar wind. This review focuses on “gradual” solar energetic particle (SEP) events including their energetic storm particle (ESP) phase, which is observed if and when an associated shock wave passes Earth. Gradual SEP events are the intense long-duration events responsible for most space weather disturbances of Earth’s magnetosphere and upper atmosphere. The major characteristics of gradual SEP events are first described including their association with shocks and coronal mass ejections (CMEs), their ion composition, and their energy spectra. In the context of acceleration mechanisms in general, the acceleration mechanism responsible for SEP events, diffusive shock acceleration, is then described in some detail including its predictions for a planar stationary shock, shock modification by the energetic particles, and wave excitation by the accelerating ions. Finally, some complexities of shock acceleration are addressed, which affect the predictive ability of the theory. These include the role of temporal and spatial variations, the distinction between the plasma and wave compression ratios at the shock, the injection of thermal plasma at the shock into the process of shock acceleration, and the nonlinear evolution of ion-excited waves in the vicinity of the shock.  相似文献   
172.
We investigated the ionospheric anomalies observed before the Tohoku earthquake, which occurred near the northeast coast of Honshu, Japan on 11 March, 2011. Based on data from a ground-based Global Positioning System (GPS) network on the Korean Peninsula, ionospheric anomalies were detected in the total electron content (TEC) during the daytime a few days before earthquake. Ionospheric TEC anomalies appeared on 5, 8 and 11 March. In particular, the ionospheric disturbances on 8 March evidenced a remarkable increase in TEC. The GPS TEC variation associated with the Tohoku earthquake was an increase of approximately 20 total electron content units (TECU), observed simultaneously in local and global TEC measurements. To investigate these pre-earthquake ionospheric anomalies, space weather conditions such as the solar activity index (F10.7) and geomagnetic activity indices (the Kp and Dst indices) were examined. We also created two-dimensional TEC maps to visual the spatial variations in the ionospheric anomalies preceding the earthquake.  相似文献   
173.
We determine the spatial-time patterns of zonally averaged carbon monoxide (CO) in the middle atmosphere by applying Principle Component Analysis to the CO data obtained from the Microwave Limb Sounder (MLS) measurements on the Aura satellite in 2004–2012. The first two principal components characterize more than 90% of the CO variability. Both principal components are localized in the low thermosphere near the mesopause. The first principal component is asymmetric relative to the poles. It has opposite signs in the Northern and Southern Hemisphere at mid to high latitudes and strongly oscillates with an annual periodicity. The second principal component has the same sign in both hemispheres and oscillates mainly with a semi-annual frequency. Both principal components are modulated by the 11-year solar cycle and display short-term variations. To test possible correlations of these variations with the short term solar ultraviolet (UV) variability we use the simultaneous measurements of the UV solar radiance from the Solar-Stellar Irradiance Comparison Experiment (SOLSTICE) on the Solar Radiation and Climate Experiment (SORCE) satellite to investigate the correlation between CO in the middle atmosphere and solar UV in 2004–2012. Using a wavelet coherence technique a weak, intermittent 27-day signal is detected in high-frequency parts of the CO principal components.  相似文献   
174.
This paper concerns optimal trajectory generation and nonlinear tracking control for stratospheric airship platform of VIA-200. To compensate for the mismatch between the point-mass model of optimal trajectory and the 6-DOF model of the nonlinear tracking problem, a new matching trajectory optimization approach is proposed. The proposed idea reduces the dissimilarity of both problems and reduces the uncertainties in the nonlinear equations of motion for stratospheric airship. In addition, its refined optimal trajectories yield better results under jet stream conditions during flight. The resultant optimal trajectories of VIA-200 are full three-dimensional ascent flight trajectories reflecting the realistic constraints of flight conditions and airship performance with and without a jet stream. Finally, 6-DOF nonlinear equations of motion are derived, including a moving wind field, and the vectorial backstepping approach is applied. The desirable tracking performance is demonstrated that application of the proposed matching optimization method enables the smooth linkage of trajectory optimization to tracking control problems.  相似文献   
175.
In the above paper1 a technique was proposed to derive an upper bound on the error probability of a decision feedback equalizer. It involves decomposition of the probability density function of residual intersymbol interference and derivation of Chebyshev-type bounds on the error functionals over the decomposed functions. In this correspondence, we demonstrate that the technique is not applicable in general. The result is not a bound in many cases.  相似文献   
176.
Impact structures are a rare habitat on Earth. However, where they do occur they can potentially have an important influence on the local ecology. Some of the types of habitat created in the immediate post-impact environment are not specific to the impact phenomenon, such as hydrothermal systems and crater lakes that can be found, for instance, in post-volcanic environments, albeit with different thermal characteristics than those associated with impact. However, some of the habitats created are specifically linked to processes of impact processing. Two examples of how impact processing of target materials has created novel habitats that improve the opportunities for colonization are found in the Haughton impact structure in the Canadian High Arctic. Impact-shocked rocks have become a habitat for endolithic microorganisms, and large, impact-shattered blocks of rock are used as resting sites by avifauna. However, some materials produced by an impact, such as melt sheet rocks, can make craters more biologically depauperate than the area surrounding them. Although there are no recent craters with which to study immediate post-impact colonization, these data yield insights into generalized mechanisms of how impact processing can influence post-impact succession. Because impact events are one of a number of processes that can bring localized destruction to ecosystems, understanding the manner in which impact structures are recolonized is of ecological interest. Impact craters are a universal phenomenon on solid planetary surfaces, and so they are of potential biological relevance on other planetary surfaces, particularly Mars.  相似文献   
177.
The interaction between the input filter and the control loop of switching regulators often results in detrimental effects, such as loop instability, transient response, and audio-signal-rejection rate, etc. A small-signal average model is derived to investigate these effects. Design constraints of an input-filter and switching-regulator system are formulated. An optimum low-pass and light-weight filter configuration is proposed.  相似文献   
178.
The synthesis of the phase-modulated waveform whose ambiguity function is the optimum estimate of some desired ambiguity function is accomplished by expanding the phase modulation in an orthogonal series. The ambiguity function x (?, ?d)|2 and the value of an arbitrary cost function defined on the (?, ?d) plane are then expressed in terms of the coefficients of the orthogonal series. The optimum waveform can then be determined by solving the variational equations for the coefficients. Numerical examples are presented for the case where it is desired to synthesize a desired ambiguity function x(?, ?d) for some rectangular region of the (?, ?d) plane.  相似文献   
179.
Modeling quaternion errors in SDINS: computer frame approach   总被引:2,自引:0,他引:2  
We propose new equivalent tilt error models which are applicable to the analysis of the terrestrial strapdown inertial navigation systems (SDINS), based on the quaternions. The currently available equivalent tilt error models, like the conventional Φ model of the gimbaled inertial navigation systems (GINS), are derived only by the true frame approach. The true frame approach has a computational disadvantage that it produces an error model where the attitude error equation is coupled with its position and velocity error equations. The motivation of this work is to solve this problem. As a result, two kinds of error models are derived. Among them, one is derived by the computer frame approach for practical onboard implementations. Thus, like the conventional GINS Ψ model, its attitude error equation is decoupled from the position and velocity error equations. The other is derived in order to show the relationship between the true frame approach and the computer frame approach which are applied to the quaternion-based SDINS. Thus, like the GINS δΘ model, it can be used to transform the error variables into each other which are calculated by the two different approaches  相似文献   
180.
We launched a cryptoendolithic habitat, made of a gneissic impactite inoculated with Chroococcidiopsis sp., into Earth orbit. After orbiting the Earth for 16 days, the rock entered the Earth's atmosphere and was recovered in Kazakhstan. The heat of entry ablated and heated the rock to a temperature well above the upper temperature limit for life to below the depth at which light levels are insufficient for photosynthetic organisms ( approximately 5 mm), thus killing all of its photosynthetic inhabitants. This experiment shows that atmospheric transit acts as a strong biogeographical dispersal filter to the interplanetary transfer of photosynthesis. Following atmospheric entry we found that a transparent, glassy fusion crust had formed on the outside of the rock. Re-inoculated Chroococcidiopsis grew preferentially under the fusion crust in the relatively unaltered gneiss beneath. Organisms under the fusion grew approximately twice as fast as the organisms on the control rock. Thus, the biologically destructive effects of atmospheric transit can generate entirely novel and improved endolithic habitats for organisms on the destination planetary body that survive the dispersal filter. The experiment advances our understanding of how island biogeography works on the interplanetary scale.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号