首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3612篇
  免费   219篇
  国内免费   30篇
航空   1782篇
航天技术   1352篇
综合类   77篇
航天   650篇
  2022年   27篇
  2021年   42篇
  2019年   25篇
  2018年   55篇
  2017年   65篇
  2016年   44篇
  2015年   38篇
  2014年   77篇
  2013年   103篇
  2012年   87篇
  2011年   164篇
  2010年   115篇
  2009年   142篇
  2008年   208篇
  2007年   116篇
  2006年   109篇
  2005年   116篇
  2004年   80篇
  2003年   117篇
  2002年   90篇
  2001年   104篇
  2000年   88篇
  1999年   102篇
  1998年   107篇
  1997年   101篇
  1996年   88篇
  1995年   105篇
  1994年   109篇
  1993年   64篇
  1992年   77篇
  1991年   40篇
  1990年   47篇
  1989年   74篇
  1988年   39篇
  1987年   32篇
  1986年   34篇
  1985年   114篇
  1984年   79篇
  1983年   79篇
  1982年   60篇
  1981年   103篇
  1980年   25篇
  1979年   27篇
  1978年   33篇
  1977年   25篇
  1976年   23篇
  1975年   39篇
  1972年   33篇
  1971年   25篇
  1967年   23篇
排序方式: 共有3861条查询结果,搜索用时 15 毫秒
221.
Mercury’s regolith, derived from the crustal bedrock, has been altered by a set of space weathering processes. Before we can interpret crustal composition, it is necessary to understand the nature of these surface alterations. The processes that space weather the surface are the same as those that form Mercury’s exosphere (micrometeoroid flux and solar wind interactions) and are moderated by the local space environment and the presence of a global magnetic field. To comprehend how space weathering acts on Mercury’s regolith, an understanding is needed of how contributing processes act as an interactive system. As no direct information (e.g., from returned samples) is available about how the system of space weathering affects Mercury’s regolith, we use as a basis for comparison the current understanding of these same processes on lunar and asteroidal regoliths as well as laboratory simulations. These comparisons suggest that Mercury’s regolith is overturned more frequently (though the characteristic surface time for a grain is unknown even relative to the lunar case), more than an order of magnitude more melt and vapor per unit time and unit area is produced by impact processes than on the Moon (creating a higher glass content via grain coatings and agglutinates), the degree of surface irradiation is comparable to or greater than that on the Moon, and photon irradiation is up to an order of magnitude greater (creating amorphous grain rims, chemically reducing the upper layers of grains to produce nanometer-scale particles of metallic iron, and depleting surface grains in volatile elements and alkali metals). The processes that chemically reduce the surface and produce nanometer-scale particles on Mercury are suggested to be more effective than similar processes on the Moon. Estimated abundances of nanometer-scale particles can account for Mercury’s dark surface relative to that of the Moon without requiring macroscopic grains of opaque minerals. The presence of nanometer-scale particles may also account for Mercury’s relatively featureless visible–near-infrared reflectance spectra. Characteristics of material returned from asteroid 25143 Itokawa demonstrate that this nanometer-scale material need not be pure iron, raising the possibility that the nanometer-scale material on Mercury may have a composition different from iron metal [such as (Fe,Mg)S]. The expected depletion of volatiles and particularly alkali metals from solar-wind interaction processes are inconsistent with the detection of sodium, potassium, and sulfur within the regolith. One plausible explanation invokes a larger fine fraction (grain size <45 μm) and more radiation-damaged grains than in the lunar surface material to create a regolith that is a more efficient reservoir for these volatiles. By this view the volatile elements detected are present not only within the grain structures, but also as adsorbates within the regolith and deposits on the surfaces of the regolith grains. The comparisons with findings from the Moon and asteroids provide a basis for predicting how compositional modifications induced by space weathering have affected Mercury’s surface composition.  相似文献   
222.
空间级加成型室温硫化硅橡胶粘结剂的研究   总被引:3,自引:1,他引:3       下载免费PDF全文
研究了一种新的空间级加成型室温硫化硅橡胶KH—SP—B ,它的特点在于具有低的热真空失重 ,在 12 5℃× 2 4h ,1× 10 - 10 MPa下的热真空失重可小于 0 .3% ;高的粘接强度 ,与金属及聚酰亚胺等的粘结强度可达到 2MPa以上 ;高的热稳定性能 ,分解温度可达 52 4℃ ;优异的低温性能 ,脆性温度为 - 114℃ ;良好的电性能 ,体积电阻率可达 1.3× 10 16 Ω·cm。是一种综合性能优良的空间级室温硫化硅橡胶。  相似文献   
223.
Education and public outreach are viewed by NASA as significant undertakings for all of its space missions. The IMAGE satellite is one of the first missions to explicitly include `E&PO in its original proposal to NASA in 1996. We will discuss what IMAGE has accomplished in this area to date, and what new activities it will conduct following a successful launch.  相似文献   
224.
A statistical overview of recent literature in information fusion   总被引:2,自引:0,他引:2  
The objective of this paper is to make a picture of the recent articles published on information fusion. Indeed, a great number of documents dealing with this technique are available in the literature. A classification scheme including application fields, fusion goals, fusion system architecture and mathematical tools is proposed. This overview of the last three years allows us to compute the article distribution into each class. Finally, some elements of preliminary analysis of this classification are drawn  相似文献   
225.
A problem of optimization of cutting parameters with respect to the criteria of maximum efficiency and maximum tool resistance is formulated. To solve the problem, a method is developed and applied for determining the Pareto-optimal values of machining conditions in milling the present-day GTE monoimpeller blade passages with a circular milling cutter.  相似文献   
226.
高档数控机床是支撑航空、航天及能源工程等领域零件加工的关键装备.当前我国已经可以设计和制造各种结构型式的高档数控机床,但是机床的性能与国外先进产品相比仍然存在一定差距,其中高速下的动态误差大是主要差距之一.将动态误差定义为进给轴执行器末端位置相对于指令位置的偏差,并划分为闭环内动态误差和闭环外动态误差两部分.以某国产数...  相似文献   
227.
    
An analysis of the relationship between a linear amplifier chain and an analog-to-digital converter (ADC) in a digital microwave receiver, with respect to sensitivity and dynamic range issues, is presented. The effects of gain, third-order intermodulation products and ADC characteristics on the performance of the receiver are illustrated and design criteria for the linear amplifier chain (given a specified ADC) are developed. A computer program is included which calculates theoretical receiver performance based on gain and third-order intermodulation product selections. Experimental results are also presented and compared with theoretical values  相似文献   
228.
Interplanetary origin of geomagnetic storms   总被引:8,自引:0,他引:8  
Around solar maximum, the dominant interplanetary phenomena causing intense magnetic storms (Dst<−100 nT) are the interplanetary manifestations of fast coronal mass ejections (CMEs). Two interplanetary structures are important for the development of storms, involving intense southward IMFs: the sheath region just behind the forward shock, and the CME ejecta itself. Whereas the initial phase of a storm is caused by the increase in plasma ram pressure associated with the increase in density and speed at and behind the shock (accompanied by a sudden impulse [SI] at Earth), the storm main phase is due to southward IMFs. If the fields are southward in both of the sheath and solar ejecta, two-step main phase storms can result and the storm intensity can be higher. The storm recovery phase begins when the IMF turns less southward, with delays of ≈1–2 hours, and has typically a decay time of 10 hours. For CMEs involving clouds the intensity of the core magnetic field and the amplitude of the speed of the cloud seems to be related, with a tendency that clouds which move at higher speeds also posses higher core magnetic field strengths, thus both contributing to the development of intense storms since those two parameters are important factors in genering the solar wind-magnetosphere coupling via the reconnection process. During solar minimum, high speed streams from coronal holes dominate the interplanetary medium activity. The high-density, low-speed streams associated with the heliospheric current sheet (HCS) plasma impinging upon the Earth's magnetosphere cause positive Dst values (storm initial phases if followed by main phases). In the absence of shocks, SIs are infrequent during this phase of the solar cycle. High-field regions called Corotating Interaction Regions (CIRs) are mainly created by the fast stream (emanating from a coronal hole) interaction with the HCS plasma sheet. However, because the Bz component is typically highly fluctuating within the CIRs, the main phases of the resultant magnetic storms typically have highly irregular profiles and are weaker. Storm recovery phases during this phase of the solar cycle are also quite different in that they can last from many days to weeks. The southward magnetic field (Bs) component of Alfvén waves in the high speed stream proper cause intermittent reconnection, intermittent substorm activity, and sporadic injections of plasma sheet energy into the outer portion of the ring current, prolonging its final decay to quiet day values. This continuous auroral activity is called High Intensity Long Duration Continuous AE Activity (HILDCAAs). Possible interplanetary mechanisms for the creation of very intense magnetic storms are discussed. We examine the effects of a combination of a long-duration southward sheath magnetic field, followed by a magnetic cloud Bs event. We also consider the effects of interplanetary shock events on the sheath plasma. Examination of profiles of very intense storms from 1957 to the present indicate that double, and sometimes triple, IMF Bs events are important causes of such events. We also discuss evidence that magnetic clouds with very intense core magnetic fields tend to have large velocities, thus implying large amplitude interplanetary electric fields that can drive very intense storms. Finally, we argue that a combination of complex interplanetary structures, involving in rare occasions the interplanetary manifestations of subsequent CMEs, can lead to extremely intense storms. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
229.
    
  相似文献   
230.
    
A survey of current knowledge about Jupiter, Saturn, Uranus, Neptune, Pluto, and their satellites is presented. The best available numerical values are given for physical parameters, including orbital and body properties, atmospheric composition and structure, and photometric parameters. The more acceptable current theories of these bodies are outlined with thorough referencing offering access to the details. The survey attempts to cover the literature through May 1, 1972. Prepared Under Contract No. NAS7-100 National Aeronautics and Space Administration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号