首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3706篇
  免费   60篇
  国内免费   42篇
航空   1757篇
航天技术   1343篇
综合类   71篇
航天   637篇
  2022年   21篇
  2021年   39篇
  2018年   55篇
  2017年   62篇
  2016年   41篇
  2015年   35篇
  2014年   77篇
  2013年   101篇
  2012年   85篇
  2011年   164篇
  2010年   115篇
  2009年   141篇
  2008年   207篇
  2007年   115篇
  2006年   109篇
  2005年   117篇
  2004年   81篇
  2003年   116篇
  2002年   90篇
  2001年   105篇
  2000年   88篇
  1999年   102篇
  1998年   107篇
  1997年   101篇
  1996年   88篇
  1995年   104篇
  1994年   107篇
  1993年   64篇
  1992年   75篇
  1991年   39篇
  1990年   44篇
  1989年   74篇
  1988年   39篇
  1987年   32篇
  1986年   34篇
  1985年   114篇
  1984年   79篇
  1983年   79篇
  1982年   60篇
  1981年   103篇
  1980年   25篇
  1979年   27篇
  1978年   33篇
  1977年   25篇
  1976年   23篇
  1975年   39篇
  1972年   33篇
  1971年   25篇
  1969年   22篇
  1967年   23篇
排序方式: 共有3808条查询结果,搜索用时 15 毫秒
141.
We are in the process of surveying the linear polarization in luminous, early-type stars. We here report on new observations of the B [e] stars S 18 and R 50, and of the Luminous Blue Variables HR Car, R 143, and HD 160529. Together with previously published data, these observations provide clear evidence for the presence of intrinsic polarization in 1 B[e] star (HD 34664) and in 5 LBVs ( Car, P Cyg, R 127, AG Car, and HR Car). The data indicate that anisotropic stellar winds are a common occurrence among massive stars in these particular evolutionary stages. For such stars, mass-loss rates estimated using the assumption of a spherical, homogeneous and stationary outflow may be in error.  相似文献   
142.
Ulysses plasma observations reveal that the forward shocks that commonly bound the leading edges of corotating interaction regions (CIRs) beyond 2 AU from the Sun at low heliographic latitudes nearly disappeared at a latitude of S26°. On the other hand, the reverse shocks that commonly bound the trailing edges of the CIRs were observed regularly up to S41.5°, but became weaker with increasing latitude. Only three CIR shocks have been observed poleward of S41.5°; all of these were weak reverse shocks. The above effects are a result of the forward waves propagating to lower heliographic latitudes and the reverse waves to higher latitudes with increasing heliocentric distance. These observational results are in excellent agreement with the predictions of a global model of solar wind flows that originate in a simple tilted-dipole geometry back at the Sun.  相似文献   
143.
Human computational vision models that attempt to account for the dynamic perception of egomotion and relative depth typically assume a common three-stage process: first, compute the optical flow field based on the dynamically changing image; second, estimate the egomotion states based on the flow; and third, estimate the relative depth/shape based on the egomotion states and possibly on a model of the viewed surface. We propose a model more in line with recent work in human vision, employing multistage integration. Here the dynamic image is first processed to generate spatial and temporal image gradients that drive a mutually interconnected state estimator and depth/shape estimator. The state estimator uses the image gradient information in combination with a depth/shape estimate of the viewed surface and an assumed model of the viewer's dynamics to generate current state estimates; in tandem, the depth/shape estimator uses the image gradient information in combination with the viewer's state estimate and assumed shape model to generate current depth/shape estimates. In this paper, we describe the model and compare model predictions with empirical data.  相似文献   
144.
The discretization of the boundary value problem for laminated composite shells is based on the finite difference approach using the regular mesh with the constant grid step and the difference operators of the second order of accuracy. The dynamic relaxation method is proposed for the solution of the nonlinear problem. The evolutionary equations of the dynamic relaxation are constructed, and the optimum parameters of the converging linear iterative process are estimated.  相似文献   
145.
The magnetospheric imaging instrument (MIMI) is a neutral and charged particle detection system on the Cassini orbiter spacecraft designed to perform both global imaging and in-situ measurements to study the overall configuration and dynamics of Saturn’s magnetosphere and its interactions with the solar wind, Saturn’s atmosphere, Titan, and the icy satellites. The processes responsible for Saturn’s aurora will be investigated; a search will be performed for substorms at Saturn; and the origins of magnetospheric hot plasmas will be determined. Further, the Jovian magnetosphere and Io torus will be imaged during Jupiter flyby. The investigative approach is twofold. (1) Perform remote sensing of the magnetospheric energetic (E > 7 keV) ion plasmas by detecting and imaging charge-exchange neutrals, created when magnetospheric ions capture electrons from ambient neutral gas. Such escaping neutrals were detected by the Voyager l spacecraft outside Saturn’s magnetosphere and can be used like photons to form images of the emitting regions, as has been demonstrated at Earth. (2) Determine through in-situ measurements the 3-D particle distribution functions including ion composition and charge states (E > 3 keV/e). The combination of in-situ measurements with global images, together with analysis and interpretation techniques that include direct “forward modeling’’ and deconvolution by tomography, is expected to yield a global assessment of magnetospheric structure and dynamics, including (a) magnetospheric ring currents and hot plasma populations, (b) magnetic field distortions, (c) electric field configuration, (d) particle injection boundaries associated with magnetic storms and substorms, and (e) the connection of the magnetosphere to ionospheric altitudes. Titan and its torus will stand out in energetic neutral images throughout the Cassini orbit, and thus serve as a continuous remote probe of ion flux variations near 20R S (e.g., magnetopause crossings and substorm plasma injections). The Titan exosphere and its cometary interaction with magnetospheric plasmas will be imaged in detail on each flyby. The three principal sensors of MIMI consists of an ion and neutral camera (INCA), a charge–energy–mass-spectrometer (CHEMS) essentially identical to our instrument flown on the ISTP/Geotail spacecraft, and the low energy magnetospheric measurements system (LEMMS), an advanced design of one of our sensors flown on the Galileo spacecraft. The INCA head is a large geometry factor (G ∼ 2.4 cm2 sr) foil time-of-flight (TOF) camera that separately registers the incident direction of either energetic neutral atoms (ENA) or ion species (≥5 full width half maximum) over the range 7 keV/nuc < E < 3 MeV/nuc. CHEMS uses electrostatic deflection, TOF, and energy measurement to determine ion energy, charge state, mass, and 3-D anisotropy in the range 3 ≤ E ≤ 220 keV/e with good (∼0.05 cm2 sr) sensitivity. LEMMS is a two-ended telescope that measures ions in the range 0.03 ≤ E ≤ 18 MeV and electrons 0.015 ≤ E≤ 0.884 MeV in the forward direction (G ∼ 0.02 cm2 sr), while high energy electrons (0.1–5 MeV) and ions (1.6–160 MeV) are measured from the back direction (G ∼ 0.4 cm2 sr). The latter are relevant to inner magnetosphere studies of diffusion processes and satellite microsignatures as well as cosmic ray albedo neutron decay (CRAND). Our analyses of Voyager energetic neutral particle and Lyman-α measurements show that INCA will provide statistically significant global magnetospheric images from a distance of ∼60 R S every 2–3 h (every ∼10 min from ∼20 R S). Moreover, during Titan flybys, INCA will provide images of the interaction of the Titan exosphere with the Saturn magnetosphere every 1.5 min. Time resolution for charged particle measurements can be < 0.1 s, which is more than adequate for microsignature studies. Data obtained during Venus-2 flyby and Earth swingby in June and August 1999, respectively, and Jupiter flyby in December 2000 to January 2001 show that the instrument is performing well, has made important and heretofore unobtainable measurements in interplanetary space at Jupiter, and will likely obtain high-quality data throughout each orbit of the Cassini mission at Saturn. Sample data from each of the three sensors during the August 18 Earth swingby are shown, including the first ENA image of part of the ring current obtained by an instrument specifically designed for this purpose. Similarily, measurements in cis-Jovian space include the first detailed charge state determination of Iogenic ions and several ENA images of that planet’s magnetosphere.This revised version was published online in July 2005 with a corrected cover date.  相似文献   
146.
Fourier methods for turbomachinery applications   总被引:5,自引:0,他引:5  
Rapid increase in computing power has made a huge difference in scales and complexities of the problems in turbomachinery that we can tackle by use of computational fluid dynamics (CFD). It is recognised, however, that there is always a need for developing efficient methods for applications to blade designs. In a design cycle, a large number of flow solutions are sought to interact iteratively or concurrently with various options, opportunities and constraints from other disciplines. This basic requirement for fast prediction methods in a multi-disciplinary design environment remains unchanged, regardless of computer speed. And it must be recognised that the multi-disciplinary nature of blading design increasingly influences outcomes of advanced gas turbine and aeroengine developments. Recently there has been considerable progress in the Fourier harmonic modelling method development for turbomachinery applications. The main driver is to develop efficient and accurate computational methodologies and working methods for prediction and analysis of unsteady effects on aerothermal performance (loading and efficiency) and aeroelasticity (blade vibration due to flutter and forced response) in turbomachinery. In this article, the developments and applications of this type of methods in the past 20 years or so are reviewed. The basic modelling assumptions and various forms of implementations for the temporal Fourier modelling approach are presented and discussed. Computational examples for realistic turbomachinery configurations/flow conditions are given to illustrate the validity and effectiveness of the approach. Although the major development has been in the temporal Fourier harmonic modelling, some recent progress in use of the spatial Fourier modelling is also described with demonstration examples.  相似文献   
147.
在FL-26跨声速风洞半模试验段进行了某高速飞机T型尾翼颤振模型的光学测量实验,并依据测量结果解算了尾翼颤振模型的弯扭特性。颤振模型表面用白色圆点进行标记,用于记录模型表面的位移变化,两台固定在风洞试验段上壁板观察孔旁肋板上的400万像素工业相机用来采集图像,采集到的图像通过自主开发的图像解算软件进行图像的识别与求解,计算出尾翼颤振模型表面标记点的三维坐标。模型表面标记点的三维坐标通过坐标变化转换到风洞气流坐标系中,利用不同时刻模型表面坐标的变化计算模型剖面扭角和弹性轴位移的分布。T型尾翼右平尾图像采集实验与弯扭特性计算结果表明,非接触光学测量技术可以用于高速颤振试验的定量分析中。  相似文献   
148.
采用电沉积方法制备了平均晶粒尺寸为45 nm的ZrO2/Ni纳米复合材料,并通过拉伸试验对该材料的超塑性能进行了研究.结果表明:ZrO2/Ni纳米复合材料具有低温高应变速率超塑性,在温度为450℃、应变速率为1.67×10-3/s时,获得的最大伸长率为605%.采用SEM和TEM分析了沉积态材料及变形后的组织,并对变形机理进行了探讨.ZrO2/Ni纳米复合材料的超塑变形机制主要是晶界滑移,S元素的析出在一定程度上协调了变形.  相似文献   
149.
Recent works on magnetic signatures due to distant lightning discharges are reviewed. Emphasis is laid on magnetic signatures in the ULF range (in the old definition from less than 1 mHz up to 1 Hz), that is in the frequency range below the Schumann resonance. These signatures are known to be of importance for the excitation of the ionospheric Alfvén resonator (IAR) which works only at night time conditions. This emphasizes the difference between night and day time ULF signatures of lightning. The IAR forms a link between the atmosphere and magnetosphere. Similarities and differences of this link in the VLF (Trimpi effect) and ULF range are worked out. A search for a unique signature of sprite-associated positive cloud-to-ground (+CG) lightning discharges ended with a negative result. In this context, however, a new model of lightning-associated induced mesospheric currents was built. Depending on mesospheric condition it can produce magnetic signatures in the entire frequency range from VLF, ELF to ULF. In the latter case it can explain signatures known as the Ultra Slow Tail of +CG lightning discharges. A current problem on the magnetic background noise intensity has been solved by taking more seriously the contribution of +CG lightning discharges to the overall background noise. Their low occurrence rate is more than compensated by their large and long lasting continuing currents. By superposed epoch analysis it could be shown that the ULF response to ?CG is one to two orders smaller that in case of +CG with similar peak current values of the return stroke.  相似文献   
150.
The Cassini mission provides a great opportunity to enlarge our knowledge of atmospheric electricity at the gas giant Saturn. Following Voyager studies, the RPWS (Radio and Plasma Wave Science) instrument has measured again the so-called SEDs (Saturn Electrostatic Discharges) which are the radio signature of lightning flashes. Observations by Cassini/ISS (Imaging Science Subsystem) have shown cloud features in Saturn’s atmosphere whose occurrence, longitudinal drift rate, and brightness were strongly related to the SEDs. In this paper we will review the main physical parameters of the SEDs. Lightning does not only give us clues about the dynamics of the atmosphere, but also serves as a natural tool to investigate properties of Saturn’s ionosphere. We will also discuss other lightning related phenomena and compare Saturn lightning with terrestrial and Jovian lightning.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号