全文获取类型
收费全文 | 9224篇 |
免费 | 271篇 |
国内免费 | 64篇 |
专业分类
航空 | 4408篇 |
航天技术 | 3203篇 |
综合类 | 110篇 |
航天 | 1838篇 |
出版年
2022年 | 51篇 |
2021年 | 117篇 |
2019年 | 74篇 |
2018年 | 233篇 |
2017年 | 171篇 |
2016年 | 137篇 |
2015年 | 82篇 |
2014年 | 224篇 |
2013年 | 286篇 |
2012年 | 267篇 |
2011年 | 417篇 |
2010年 | 310篇 |
2009年 | 427篇 |
2008年 | 485篇 |
2007年 | 301篇 |
2006年 | 239篇 |
2005年 | 259篇 |
2004年 | 229篇 |
2003年 | 276篇 |
2002年 | 206篇 |
2001年 | 290篇 |
2000年 | 191篇 |
1999年 | 224篇 |
1998年 | 250篇 |
1997年 | 177篇 |
1996年 | 216篇 |
1995年 | 267篇 |
1994年 | 265篇 |
1993年 | 160篇 |
1992年 | 200篇 |
1991年 | 83篇 |
1990年 | 80篇 |
1989年 | 188篇 |
1988年 | 85篇 |
1987年 | 79篇 |
1986年 | 82篇 |
1985年 | 248篇 |
1984年 | 191篇 |
1983年 | 155篇 |
1982年 | 155篇 |
1981年 | 272篇 |
1980年 | 70篇 |
1979年 | 65篇 |
1978年 | 75篇 |
1977年 | 59篇 |
1975年 | 78篇 |
1974年 | 55篇 |
1972年 | 64篇 |
1971年 | 59篇 |
1970年 | 50篇 |
排序方式: 共有9559条查询结果,搜索用时 15 毫秒
371.
372.
This paper discusses the generation, stability, and control of artificial equilibrium points for a solar balloon spacecraft in the α Centauri A and B binary star system. The continuous propulsive acceleration provided by a solar balloon is shown to be able to modify the position of the (classical) Lagrangian equilibrium points of the three-body system on a locus whose geometrical form is known analytically. A linear stability analysis reveals that the new generated equilibrium points are usually unstable, but part of them can be stabilized with a simple feedback control logic. 相似文献
373.
Efron A.J. Swaszek P.E. Tufts D.W. 《IEEE transactions on aerospace and electronic systems》1992,28(4):932-943
A detector which is designed to operate in a correlated Gaussian-plus-impulsive-noise environment is presented. The detector whitens the data robustly and then uses a two-sided threshold test to determine the presence of impulsive samples. The impulsive samples are discarded, and the remaining samples are used to detect the presence or absence of a signal using a matched filter. An approximate analysis is presented, and simulations are used to demonstrate the effectiveness of this approach 相似文献
374.
P.A. Chaizy T.G. DimbylowP.M. Allan M.A. Hapgood 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2011
In this paper, Science Operations Planning Expertise (SOPE) is defined as the expertise that is held by people who have the two following qualities. First they have both theoretical and practical experience in operations planning, in general, and in space science operations planning in particular. Second, they can be used, on request and at least, to provide with advice the teams that design and implement science operations systems in order to optimise the performance and productivity of the mission. However, the relevance and use of such SOPE early on during the Mission Design Phase (MDP) is not sufficiently recognised. As a result, science operations planning is often neglected or poorly assessed during the mission definition phases. This can result in mission architectures that are not optimum in terms of cost and scientific returns, particularly for missions that require a significant amount of science operations planning. Consequently, science operations planning difficulties and cost underestimations are often realised only when it is too late to design and implement the most appropriate solutions. In addition, higher costs can potentially reduce both the number of new missions and the chances of existing ones to be extended. Moreover, the quality, and subsequently efficiency, of SOPE can vary greatly. This is why we also believe that the best possible type of SOPE requires a structure similar to the ones of existing bodies of expertise dedicated to the data processing such as the International Planetary Data Alliance (IPDA), the Space Physics Archive Search and Extract (SPASE) or the Planetary Data System (PDS). Indeed, this is the only way of efficiently identifying science operations planning issues and their solutions as well as of keeping track of them in order to apply them to new missions. Therefore, this paper advocates for the need to allocate resources in order to both optimise the use of SOPE early on during the MDP and to perform, at least, a feasibility study of such a more structured SOPE. 相似文献
375.
M. Pezzopane M. Pietrella A. Pignatelli B. Zolesi Lj.R. Cander 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
This paper describes the three-dimensional (3-D) electron density mapping of the ionosphere given as output by the assimilative IRI-SIRMUP-P (ISP) model for three different geomagnetic storms. Results of the 3-D model are shown by comparing the electron density profiles given by the model with the ones measured at two testing ionospheric stations: Roquetes (40.8°N, 0.5°E), Spain, and San Vito (40.6°N, 17.8°E), Italy. The reference ionospheric stations from which the autoscaled foF2 and M(3000)F2 data as well as the real-time vertical electron density profiles are assimilated by the ISP model are those of El Arenosillo (37.1°N, 353.3°E), Spain, Rome (41.8°N, 12.5°E), and Gibilmanna (37.9°N, 14.0°E), Italy. Overall, the representation of the ionosphere made by the ISP model is better than the climatological representation made by only the IRI-URSI and the IRI-CCIR models. However, there are few cases for which the assimilation of the autoscaled data from the reference stations causes either a strong underestimation or a strong overestimation of the real conditions of the ionosphere, which is in these cases better represented by only the IRI-URSI model. This ISP misrepresentation is mainly due to the fact that the reference ionospheric stations covering the region mapped by the model turn out to be few, especially for disturbed periods when the ionosphere is very variable both in time and in space and hence a larger number of stations would be required. The inclusion of new additional reference ionospheric stations could surely smooth out this concern. 相似文献
376.
Pomalaza-Raez C.A. Hurd W.J. 《IEEE transactions on aerospace and electronic systems》1986,(5):554-558
The potential benefit of using a smoothing filter to estimate a carrier phase over use of phase-locked loops (PLL) is determined. Numerical results are presented for the performance of three possible configurations of an all-digital coherent demodulation receiver. These are residual carrier PLL, sideband-aided residual carrier PLL, and finally sideband aided with Kalman smoother. The average symbol SNR after losses due to carrier phase estimation is computed for different total power SNRs, symbol rates, and symbol SNRs. It is found that smoothing is most beneficial for low symbol SNRs and low symbol rates. Smoothing gains up to 0.7 dB over sideband-aided residual carrier PLL, and the combined benefit of smoothing and sideband aiding relative to residual carrier loop is often in excess of 1 dB. 相似文献
377.
O. Koudelka G. Egger B. Josseck N. Deschamp C. Cordell Grant D. Foisy R. Zee W. Weiss R. Kuschnig A. Scholtz W. Keim 《Acta Astronautica》2009,64(11-12):1144-1149
A nanosatellite to investigate the brightness oscillations of massive luminous stars by differential photometry is currently developed by a Canadian/Austrian team within the BRITE (Bright Target Explorer) project. The first Austrian satellite funded by the Austrian Space Program, called TUGSAT-1/BRITE-Austria, builds on the space heritage of the most successful Canadian CanX-2 and MOST missions. The satellite makes use of recent advances in miniaturized attitude determination and control systems. Precision three-axis stabilization by small reaction wheels and a star tracker provides the necessary accuracy for the photometer telescope to the arcminute level. This will provide to the astronomers photometric data of the most massive stars with unprecedented precision; data which cannot be obtained from the ground due to limitations imposed by the terrestrial atmosphere.The paper describes the spacecraft characteristics and the ground infrastructure being established in support of the BRITE mission which will consist of a constellation of up to four nearly identical satellites allowing to carry out long-term observation of stars (magnitude +3.5) not only with respect to brightness variations, but also in different spectrum ranges. 相似文献
378.
K Dose A Bieger-Dose R Dillmann M Gill O Kerz A Klein C Stridde 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1996,18(12):51-60
The response of spores of Bacillus subtilis, cells of Deinococcus radiodurans and conidia of Aspergillus ochraceus to actual and simulated space conditions (UV in combination with long-term exposure to extremely dry conditions, including vacuum) has been studied: The following effects have been analyzed: decrease of viability, occurrence of DNA double strand breaks, formation of DNA-protein cross-links and DNA-DNA cross-links. All organisms show an increased sensitivity to UV light in extreme dryness (dry argon or vacuum) compared to an irradiation in aqueous suspension. The UV irradiation leads in all cases to a variety of DNA lesions. Very conspicuous is the occurrence of double strand breaks. Most of these double strand breaks are produced by incomplete repair of other lesions, especially base damages. The increase in DNA lesions can be correlated to the loss in viability. The specific response of the chromosomal DNA to UV irradiation in extreme dryness, however, varies from species to species and depends on the state of dehydration. The formation of DNA double strand breaks and DNA-protein cross-links prevails in the case of B. subtilis spores. In cells of Deinococcus radiodurans DNA-DNA cross-links often predominate, in conidia of Aspergillus ochraceus double strand breaks. The results obtained by direct exposure to space conditions (EURECA mission and D2 mission) largely agree with the laboratory data. 相似文献
379.
Moyer L.R. Morgan C.J. Rugger D.A. 《IEEE transactions on aerospace and electronic systems》1989,25(4):584-587
An exact expression for the bistatic resolution-cell area (A B) is developed for the special case in which either the transmit or receive antenna has a broad azimuth beamwidth or is omnidirectional. Quantitative examples are presented to illustrate the variation of A B with location. A comparison is made with the performance of a commonly used approximation formula 相似文献
380.
Mitchell A Berger 《Space Science Reviews》1994,68(1-4):3-14
Coronal loops are heated by the release of stored magnetic energy and by the dissipation of MHD waves. Both of these processes rely on the presence of internal structure in the loop. Tangled or sheared fields dissipate wave energy more efficiently than smooth fields. Also, a highly structured field contains a large reservoir of free magnetic energy which can be released in small reconnection events (microflares and nanoflares). The typical amount of internal structure in a loop depends on the balance between input at the photosphere and dissipation. This paper describes measures of magnetic structure, how these measures relate to the magnetic energy, and how photospheric motions affect the structure of a loop.The magnetic energy released during a reconnection event. can be estimated if one knows the equilibrium energy before and after the event. For a loop with highly tangled field lines, a direct solution of the equilibrium equations may be difficult. However, lower bounds can be placed on the energy of the equilibrium field, given a measure of the tangling known as the crossing number. These bounds lead to an estimate of the buildup of energy in a coronal loop caused by random photospheric motions. Parker's topological dissipation model can plausibly supply the 107 erg cm–2 s–1 needed to heat the active region corona. The heating rate can be greatly enhanced by fragmentation of flux tubes, for example by the breakup of photospheric footpoints and the formation of new footpoints. 相似文献