首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9544篇
  免费   58篇
  国内免费   47篇
航空   4462篇
航天技术   3164篇
综合类   91篇
航天   1932篇
  2021年   99篇
  2019年   54篇
  2018年   229篇
  2017年   187篇
  2016年   135篇
  2015年   80篇
  2014年   220篇
  2013年   280篇
  2012年   275篇
  2011年   455篇
  2010年   342篇
  2009年   465篇
  2008年   509篇
  2007年   341篇
  2006年   234篇
  2005年   282篇
  2004年   233篇
  2003年   275篇
  2002年   205篇
  2001年   289篇
  2000年   191篇
  1999年   224篇
  1998年   250篇
  1997年   177篇
  1996年   216篇
  1995年   266篇
  1994年   263篇
  1993年   161篇
  1992年   199篇
  1991年   82篇
  1990年   77篇
  1989年   188篇
  1988年   85篇
  1987年   79篇
  1986年   81篇
  1985年   247篇
  1984年   191篇
  1983年   155篇
  1982年   154篇
  1981年   272篇
  1980年   70篇
  1979年   65篇
  1978年   75篇
  1977年   59篇
  1976年   48篇
  1975年   78篇
  1974年   55篇
  1972年   64篇
  1971年   59篇
  1970年   50篇
排序方式: 共有9649条查询结果,搜索用时 421 毫秒
171.
本文研究了关于旋转轴在贮箱的非对称轴上且远离贮箱的几何中心情况下,流体在微重力环境中由重力梯度加速度诱发的晃动特性。我们以精密X光光谱天文物理实验卫星(简称AXAF-S)作为研究对象,获得了由于旋转运动引起的重力梯度加速度的数学表达式。关于晃动问题的数值计算是用与卫星固连的非惯性坐标系为基础,目的是寻求一种较为易处理且适合于流体力学方程的边界和初始条件。通过数值计算获得了流体作用于卫星贮箱上的力和力矩。  相似文献   
172.
In order to help assess the risk to astronauts due to the long-term exposure to the natural radiation environment in space, an understanding of how the primary radiation field is changed when passing through shielding and tissue materials must be obtained. One important aspect of the change in the primary radiation field after passing through shielding materials is the production of secondary particles from the breakup of the primary. Neutrons are an important component of the secondary particle field due to their relatively high biological weighting factors, and due to their relative abundance, especially behind thick shielding scenarios. Because of the complexity of the problem, the estimation of the risk from exposure to the secondary neutron field must be handled using calculational techniques. However, those calculations will need an extensive set of neutron cross section and thicktarget neutron yield data in order to make an accurate assessment of the risk. In this paper we briefly survey the existing neutron-production data sets that are applicable to the space radiation transport problem, and we point out how neutron production from protons is different than neutron production from heavy ions. We also make comparisons of one the heavy-ion data sets with Boltzmann-Uehling-Uhlenbeck (BUU) calculations.  相似文献   
173.
In 1996 the NASA Advisory Council asked for a comprehensive look at future launch projections out to the year 2030 and beyond. In response to this request NASA sponsored a study at The Aerospace Corporation to develop long-range space transportation models for future commercial and government applications, and to analyze the design considerations and desired characteristics for future space transportation systems. Follow-ons to present space missions as well as a wide array of potential new space applications are considered in the study. This paper summarizes the space transportation system characteristics required to enable various classes of future missions. High reliability and the ability to achieve high flight rates per vehicle are shown to be key attributes for achieving more economical launch systems. Technical, economic and policy implications are also discussed.  相似文献   
174.
We study the motion of a symmetrical satellite with a pair of flexible viscoelastic rods in a central Newtonian gravitational field. A restricted problem formulation is considered, when the satellite's center of mass moves along a fixed circular orbit. A small parameter is introduced which is inversely proportional to the stiffness of flexible elements. Another small parameter is equal to the ratio of the squared orbital angular velocity and the squared magnitude of the initial angular velocity of the satellite. In order to describe the satellite rotational motion relative to the center of mass, we use the canonical Andoyer variables. In the undisturbed formulation of the problem, i.e., at = 0 and = 0, these variables are the action–angle variables. Equations describing the evolution of motion are derived by an asymptotic method which combines the method of separating motions for systems with an infinite number of degrees of freedom and the Krylov–Bogolyubov method for systems with fast and slow variables. The manifolds of stationary motions are found, and their stability is investigated on the basis of equations in variations. Phase portraits are constructed which describe the rotational motion of a satellite at the stage of slow dissipative evolution.  相似文献   
175.
In the 36 years between June 1965 and February 2001, the US human space flight program has conducted 100 spacewalks, or extravehicular activities (EVAs), as NASA officially calls them. EVA occurs when astronauts wearing spacesuits travel outside their protective spacecraft to perform tasks in the space vacuum environment. US EVA started with pioneering feasibility tests during the Gemini Program. The Apollo Program required sending astronauts to the moon and performing EVA to explore the lunar surface. EVA supported scientific mission objectives of the Skylab program, but may be best remembered for repairing launch damage to the vehicle and thus saving the program. EVA capability on Shuttle was initially planned to be a kit that could be flown at will, and was primarily intended for coping with vehicle return emergencies. The Skylab emergency and the pivotal role of EVA in salvaging that program quickly promoted Shuttle EVA to an essential element for achieving mission objectives, including retrieving satellites and developing techniques to assemble and maintain the International Space Station (ISS). Now, EVA is supporting assembly of ISS. This paper highlights development of US EVA capability within the context of the overarching mission objectives of the US human space flight program.  相似文献   
176.
The primary objective of the Laser Interferometer Space Antenna (LISA) mission is to detect and observe gravitational waves from massive black holes and galactic binaries in the frequency range 10−4 to 10−1 Hz. This low-frequency range is inaccessible to ground-based interferometers because of the unshieldable background of local gravitational noise and because ground-based interferometers are limited in length to a few km. LISA is an ESA cornerstone mission and recently had a system study (Ref. 1) carried out by a consortium led by Astrium, which confirmed the basic configuration for the payload with only minor changes, and provided detailed concepts for the spacecraft and mission design. The study confirmed the need for a drag-free technology demonstration mission to develop the inertial sensors for LISA, before embarking on the build of the flight sensors. With a technology demonstration flight in 2005, it would be possible to carry out LISA as a joint ESA-NASA mission with a launch by 2010 subject to the funding programmatics. The baseline for LISA is three disc-like spacecraft each of which consist of a science module which carries the laser interferometer payload (two in each science module) and a propulsion module containing an ion drive and the hydrazine thrusters of the AOCS. The propulsion module is used for the transfer from earth escape trajectory provided by the Delta II launch to the operational orbit. Once there the propulsion module is jettisoned to reduce disturbances on the payload. Detailed analysis of thermal and gravitational disturbances, a model of the drag-free control and of the interferometer operation confirm that the strain sensitivity of the interferometer will be achieved.  相似文献   
177.
178.
The data of measuring the plasma density in the topside ionosphere for the South-Atlantic geomagnetic anomaly region are presented. It is shown that irregular plasma structures with a wide spectrum of irregularity scale (including large-scale structures with a dimension of order of some hundred kilometers) can be generated in the fields of electrostatic turbulence in inhomogeneous plasma.  相似文献   
179.
The results of processing and interpreting the data of joint Russian–French experiments for studying the heat and mass transfer in near-critical fluids are presented. The experiments were carried out with the ALICE-1 instrument during an orbital flight of the Mirstation from September 30 to October 2, 1995 [1]. For such fluids with a point-like source of heat, when they are placed in the field of uncontrolled inertial accelerations of the spacecraft, the influence of thermovibrational and thermogravitational mechanisms of convection on the propagation of the region of optical irregularity is investigated. It is shown that, near the thermodynamic critical point, local heating of the medium leads to generation of either intense thermogravitational convection or averaged vibroconvective flow, depending on the frequency of variations of the microaccelerations. The structure and characteristics of discovered motions are studied. The results of numerical simulations are presented that confirm the conclusion about a possibility of generation of an averaged convective flow of a vibrational type by the high-frequency component of microaccelerations.  相似文献   
180.
Earth's subsurface offers one of the best possible sites to search for microbial life and the characteristic lithologies that life leaves behind. The subterrain may be equally valuable for astrobiology. Where surface conditions are particularly hostile, like on Mars, the subsurface may offer the only habitat for extant lifeforms and access to recognizable biosignatures. We have identified numerous unequivocally biogenic macroscopic, microscopic, and chemical/geochemical cave biosignatures. However, to be especially useful for astrobiology, we are looking for suites of characteristics. Ideally, "biosignature suites" should be both macroscopically and microscopically detectable, independently verifiable by nonmorphological means, and as independent as possible of specific details of life chemistries--demanding (and sometimes conflicting) criteria. Working in fragile, legally protected environments, we developed noninvasive and minimal impact techniques for life and biosignature detection/characterization analogous to Planetary Protection Protocols. Our difficult field conditions have shared limitations common to extraterrestrial robotic and human missions. Thus, the cave/subsurface astrobiology model addresses the most important goals from both scientific and operational points of view. We present details of cave biosignature suites involving manganese and iron oxides, calcite, and sulfur minerals. Suites include morphological fossils, mineral-coated filaments, living microbial mats and preserved biofabrics, 13C and 34S values consistent with microbial metabolism, genetic data, unusual elemental abundances and ratios, and crystallographic mineral forms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号