首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   72篇
  免费   0篇
航空   35篇
航天技术   10篇
航天   27篇
  2021年   1篇
  2019年   2篇
  2018年   3篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2011年   9篇
  2010年   2篇
  2009年   2篇
  2008年   1篇
  2007年   4篇
  2006年   1篇
  2005年   4篇
  2004年   6篇
  2003年   3篇
  2002年   1篇
  2000年   2篇
  1999年   1篇
  1998年   4篇
  1997年   1篇
  1992年   1篇
  1990年   1篇
  1988年   1篇
  1987年   3篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
  1974年   1篇
  1973年   2篇
  1972年   1篇
  1971年   2篇
  1968年   1篇
  1967年   1篇
  1966年   1篇
排序方式: 共有72条查询结果,搜索用时 15 毫秒
21.
The observational properties of the soft gamma repeaters are reviewed briefly, starting with the time histories and energy spectra of their bursts. The short bursts and giant flares are compared. Their quiescent emission is presented, and the context of the magnetar model is discussed.  相似文献   
22.
A primary objective of the International Space Station is to provide a long-term quiescent environment for the conduct of scientific research for a variety of microgravity science disciplines. Since continuous human presence on the space station began in November 2000 through the end of Increment-6, over 1260 hours of crew time have been allocated to research. However, far more research time has been accumulated by experiments controlled on the ground. By the end of the time period covered by this paper (end of Increment-6), the total experiment hours performed on the station are well over 100,000 hours (Expedition 6 Press Kit: Station Begins Third Year of Human Occupation, Boeing/USA/NASA, October 25, 2002). This paper presents the results of the on-going effort by the Principal Investigator Microgravity Services project, at NASA Glenn Research Center, in Cleveland, Ohio, to characterize the microgravity environment of the International Space Station in order to keep the microgravity scientific community apprised of the reduced gravity environment provided by the station for the performance of space experiments. This paper focuses on the station microgravity environment for Increments 5 and 6. During that period over 580 Gbytes of acceleration data were collected, out of which over 34,790 hours were analyzed. The results presented in this paper are divided into two sections: quasi-steady and vibratory. For the quasi-steady analysis, over 7794 hours of acceleration data were analyzed, while over 27,000 hours were analyzed for the vibratory analysis. The results of the data analysis are presented in this paper in the form of a grand summary for the period under consideration. For the quasi-steady acceleration response, results are presented in the form of a 95% confidence interval for the station during "normal microgravity mode operations" for the following three attitudes: local vertical local horizontal, X-axis perpendicular to the orbit plane and the Russian torque equilibrium attitude. The same analysis was performed for the station during "non-microgravity mode operations" to assess the station quasi-steady acceleration environment over a long period of time. The same type of analysis was performed for the vibratory, but a 95th percentile benchmark was used, which shows the overall acceleration magnitude during Increments 5 and 6. The results, for both quasi-steady and vibratory acceleration response, show that the station is not yet meeting the microgravity requirements during the microgravity mode operations. However, it should be stressed that the requirements apply only at assembly complete, whereas the results presented below apply up to the station's configuration at the end of Increment-6.  相似文献   
23.
We propose a terahertz (far-infrared) circular dichroism-based life-detection technology that may provide a universal and unequivocal spectroscopic signature of living systems regardless of their genesis. We argue that, irrespective of the specifics of their chemistry, all life forms will employ well-structured, chiral, stereochemically pure macromolecules (>500 atoms) as the catalysts with which they perform their metabolic and replicative functions. We also argue that nearly all such macromolecules will absorb strongly at terahertz frequencies and exhibit significant circular dichroism, and that this circular dichroism unambiguously distinguishes biological from abiological materials. Lastly, we describe several approaches to the fabrication of a terahertz circular dichroism spectrometer and provide preliminary experimental indications of their feasibility. Because terahertz circular dichroism signals arise from the molecular machinery necessary to carry out life's metabolic and genetic processes, this life-detection method differs fundamentally from more well-established approaches based on the detection of isotopic fractionation, "signature" carbon compounds, disequilibria, or other by-products of metabolism. Moreover, terahertz circular dichroism spectroscopy detects this machinery in a manner that makes few, if any, assumptions as to its chemical nature or the processes that it performs.  相似文献   
24.
Optical moving target detection with 3-D matched filtering   总被引:3,自引:0,他引:3  
Three-dimensional (3-D) matched filtering has been suggested as a powerful processing technique for detecting weak, moving optical targets immersed in a background noise field. The procedure requires the processing of entire sequences of frames of optical scenes containing the moving targets. The 3-D processor must be properly matched to the target signature and its velocity vector, but will simultaneously detect all targets to which it is matched. The results of a study to evaluate the 3-D processor are presented. Simulation results are reported which show the ability of the processor to detect targets well below the background level. These results demonstrate the capability and robustness of the processor, and show that the algorithms, although somewhat complicated, can be implemented readily. Some effects on the number of frames processed, target flight scenarios, and velocity and signature mismatch are also presented. The ability to detect multiple targets is demonstrated  相似文献   
25.
Multistage partially adaptive STAP CFAR detection algorithm   总被引:1,自引:0,他引:1  
A new method of partially adaptive constant false-alarm rate (CFAR) detection is introduced. The processor implements a novel sequence of orthogonal subspace projections to decompose the Wiener solution in terms of the cross-correlation observed at each stage. The performance is evaluated using the general framework of space-time adaptive processing (STAP) for the cases of both known and unknown covariance. It is demonstrated that this new approach to partially adaptive STAP outperforms the more complex eigen-analysis approaches using both simulated DARPA Mountain Top data and true pulse-Doppler radar data collected by the MCARM radar  相似文献   
26.
The properties of an adaptive array antenna, including transient response rate and control loop noise, depend on the intensity of the external noise field. This dependence can be reduced by envelope hard limiting in the control loops, without degrading the performance of the adaptive array.  相似文献   
27.
Theory of Adaptive Radar   总被引:16,自引:0,他引:16  
This paper reviews the principles of adaptive radar in which both the spatial (antenna pattern) and temporal (Doppler filter) responses of the system are controlled adaptively. An adaptive system senses the angular-Doppler distribution of the external noise field and adjusts a set of radar parameters for maximum signal-to-interference ratio and optimum detection performance. A gradient technique for control of the radar array/filter weights is described and shown to generate weights which asymptotically approach optimum values. Simulation results illustrate the convergence rate of adaptive systems and the performance improvement which can be achieved.  相似文献   
28.
Life is constructed from a limited toolkit: the Periodic Table. The reduction of oxygen provides the largest free energy release per electron transfer, except for the reduction of fluorine and chlorine. However, the bonding of O2 ensures that it is sufficiently stable to accumulate in a planetary atmosphere, whereas the more weakly bonded halogen gases are far too reactive ever to achieve significant abundance. Consequently, an atmosphere rich in O2 provides the largest feasible energy source. This universal uniqueness suggests that abundant O2 is necessary for the high-energy demands of complex life anywhere, i.e., for actively mobile organisms of approximately 10(-1)-10(0) m size scale with specialized, differentiated anatomy comparable to advanced metazoans. On Earth, aerobic metabolism provides about an order of magnitude more energy for a given intake of food than anaerobic metabolism. As a result, anaerobes do not grow beyond the complexity of uniseriate filaments of cells because of prohibitively low growth efficiencies in a food chain. The biomass cumulative number density, n, at a particular mass, m, scales as n (> m) proportional to m(-1) for aquatic aerobes, and we show that for anaerobes the predicted scaling is n proportional to m (-1.5), close to a growth-limited threshold. Even with aerobic metabolism, the partial pressure of atmospheric O2 (P(O2)) must exceed approximately 10(3) Pa to allow organisms that rely on O2 diffusion to evolve to a size approximately 10(3) m x P(O2) in the range approximately 10(3)-10(4) Pa is needed to exceed the threshold of approximately 10(2) m size for complex life with circulatory physiology. In terrestrial life, O(2) also facilitates hundreds of metabolic pathways, including those that make specialized structural molecules found only in animals. The time scale to reach P(O(2)) approximately 10(4) Pa, or "oxygenation time," was long on the Earth (approximately 3.9 billion years), within almost a factor of 2 of the Sun's main sequence lifetime. Consequently, we argue that the oxygenation time is likely to be a key rate-limiting step in the evolution of complex life on other habitable planets. The oxygenation time could preclude complex life on Earth-like planets orbiting short-lived stars that end their main sequence lives before planetary oxygenation takes place. Conversely, Earth-like planets orbiting long-lived stars are potentially favorable habitats for complex life.  相似文献   
29.
30.
For decades, wind tunnel testing has been conducted in test section environments that have not been adequately or consistently documented. Since wind tunnel flow quality can adversely affect test results, accurate and consistent flow quality measurements are required, along with an understanding of the sources, characteristics, and management of flow turbulence. This paper will review turbulence measurement techniques and data obtained in subsonic, transonic, and supersonic test facilities as they relate to the determination and assessment of wind tunnel flow quality. The principles and practical application of instrumentation used in the measurement and characterization of wind tunnel turbulence will be described. Techniques used for the identification of the sources of wind tunnel disturbances, and the performance of turbulence suppression devices will be outlined. These test techniques will be illustrated with extensive measurements obtained in a number of test facilities. The measurements will provide comprehensive turbulence data that are vital to the assessment and management of flow quality. Procedures designed to assess the potential influence of adverse flow quality on wind tunnel model test performance will also be discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号