The results of reconstruction of uncontrolled attitude motion of the Foton M-2 satellite using measurements with the accelerometer TAS-3 are presented. The attitude motion of this satellite has been previously
determined by the measurement data of the Earth’s magnetic field and the angular velocity. The TAS-3 data for this purpose
are used for the first time. These data contain a well-pronounced additional component which made impossible their direct
employment for the reconstruction of the attitude motion and whose origin was unknown several years ago. Later it has become
known that the additional component is caused by the influence of the Earth’s magnetic field. The disclosure of this fact
allowed us to take into account a necessary correction in processing of TAS-3 data and to use them for the reconstruction
of the attitude motion of Foton M-2. Here, a modified method of processing TAS-3 data is described, as well as results of its testing and employing. The testing
consisted in the direct comparison of the motion reconstructed by the new method with the motion constructed by the magnetic
measurements. The new method allowed us to find the actual motion of Foton M-2 in the period June 9, 2005–June 14, 2005, when no magnetic measurements were carried out. 相似文献
India has established a ‘critical mass’ in terms of EO infrastructure for disaster management. Starting from IRS 1A in 1980s to the most recent CARTOSAT-2, India's EO series of satellites are moving away from the generic to thematic constellations. The series of RESOURCESAT, CARTOSAT, OCEANSAT and forthcoming Radar Imaging Satellite (RISAT) satellites exemplifies the thematic characters of the EO missions. These thematic constellations, characterized with multi-platform, multi-resolution and multi-parameter EO missions, are important assets for disaster reduction. In the more specific term, these constellations in conjunction with contemporary EO missions address the critical observational gaps in terms of capturing the catastrophic events, phenomena or their attributes on real/near real time basis with appropriate spatial and temporal attributes.Using conjunctively the data primarily emanating these thematic constellations and all weather radar data from aerial platform and also from RADARSAT as gap-fillers has been a part of India's EO strategy for disaster management. The infrastructure has been addressing the observational needs in disaster management. The high resolution imaging better than one-meter spatial resolution and also Digital Elevation Models (DEM) emanating from Cartosat series are providing valuable inputs to characterize geo-physical terrain vulnerability. Radar Imaging Satellite, with all weather capability missions, is being configured for disaster management. At present, the current Indian EO satellites cover the whole world every 40 h (with different resolutions and swaths), and the efforts are towards making it better than 24 h. The efforts are on to configure RESOURCESAT 3 with wider swath of 740 km with 23 m spatial resolution and also to have AWiFS type of capability at geo-platform to improve the observational frequencies for disaster monitoring.India's EO infrastructure has responded comprehensively to all the natural disasters the country has faced in the recent times. As a member of International Charter on Space and Major Disasters, India has also been instrumental in promoting the related UN initiatives viz., RESAP of UN ESCAP, SPIDER of UN OOSA, Sentinel Asia of JAXA initiative and also of GEOSS initiative. The paper intends to illustrate India's EO strategy for disaster reduction. 相似文献
In order to help assess the risk to astronauts due to the long-term exposure to the natural radiation environment in space, an understanding of how the primary radiation field is changed when passing through shielding and tissue materials must be obtained. One important aspect of the change in the primary radiation field after passing through shielding materials is the production of secondary particles from the breakup of the primary. Neutrons are an important component of the secondary particle field due to their relatively high biological weighting factors, and due to their relative abundance, especially behind thick shielding scenarios. Because of the complexity of the problem, the estimation of the risk from exposure to the secondary neutron field must be handled using calculational techniques. However, those calculations will need an extensive set of neutron cross section and thicktarget neutron yield data in order to make an accurate assessment of the risk. In this paper we briefly survey the existing neutron-production data sets that are applicable to the space radiation transport problem, and we point out how neutron production from protons is different than neutron production from heavy ions. We also make comparisons of one the heavy-ion data sets with Boltzmann-Uehling-Uhlenbeck (BUU) calculations. 相似文献
The RELEС scientific payload of the Vernov satellite launched on July 8, 2014 includes the DRGE spectrometer of gamma-rays and electrons. This instrument comprises a set of scintillator phoswich-detectors, including four identical X-ray and gamma-ray detector with an energy range of 10 kev to 3 MeV with a total area of ~500 cm2 directed to the atmosphere, as well as an electron spectrometer containing three mutually orthogonal detector units with a geometric factor of ~2 cm2 sr. The aim of a space experiment with the DRGE instrument is the study of fast phenomena, in particular Terrestrial gamma-ray flashes (TGF) and magnetospheric electron precipitation. In this regard, the instrument provides the transmission of both monitoring data with a time resolution of 1 s, and data in the event-by-event mode, with a recording of the time of detection of each gamma quantum or electron to an accuracy of ~15 μs. This makes it possible to not only conduct a detailed analysis of the variability in the gamma-ray range, but also compare the time profiles with the results of measurements with other RELEC instruments (the detector of optical and ultraviolet flares, radio-frequency and low-frequency analyzers of electromagnetic field parameters), as well as with the data of ground-based facility for thunderstorm activity. This paper presents the first catalog of Terrestrial gamma-ray flashes. The criterion for selecting flashes required in order to detect no less than 5 hard quanta in 1 ms by at least two independent detectors. The TGFs included in the catalog have a typical duration of ~400 μs, during which 10–40 gamma-ray quanta were detected. The time profiles, spectral parameters, and geographic position, as well as a result of a comparison with the output data of other Vernov instruments, are presented for each of candidates. The candidate for Terrestrial gamma-ray flashes detected in the near-polar region over Antarctica is discussed. 相似文献
I apply my proposed modification of Soar/Spatial/Visual System and Kosslyn’s (1983) computational operations on images to problems within a 2 × 2 taxonomy that classifies research according to whether the coding involves static or dynamic relations within an object or between objects (Newcombe & Shipley, 2015). I then repeat this analysis for problems that are included in mathematics and science curricula. Because many of these problems involve reasoning from diagrams Hegarty’s (2011) framework for reasoning from visual-spatial displays provides additional support for organizing this topic. Two more relevant frameworks specify reasoning at different levels of abstraction (Reed, 2016) and with different combinations of actions and objects (Reed, 2018). The article concludes with suggestions for future directions. 相似文献
Highly monochromatic signals, such as TV carriers, can be detected sensitively by using a narrow filter (b < or = 1 Hz) and performing power accumulation on its output. If instead a low-duty-cycle pulsed signal of the same total energy is present, the sensitivity of a square law device, followed by a thresholding operation (to eliminate most samples containing only noise), followed by the algorithm to be described, is greater by about 7 dB in typical cases. This is particularly interesting to SETI because such a pulsed signal is exactly what is sent by a rotating beacon with a directional antenna. Such a pulsed signal is, therefore, a good candidate for an extraterrestrial beacon. Software for detecting this signal type is now ready for field testing with the NASA Multichannel Spectrum Analyzer (MCSA). 相似文献
Recent events in the International Space Station (ISS) Program have resulted in the necessity to re-examine the research priorities and research plans for future years. Due to both technical and fiscal resource constraints expected on the International Space Station, it is imperative that research priorities be carefully reviewed and clearly articulated. In consultation with OSTP and the Office of Management and budget (OMB), NASA's Office of Biological and Physical Research (OBPR) assembled an ad-hoc external advisory committee, the Biological and Physical Research Maximization and Prioritization (REMAP) Task Force. This paper describes the outcome of the Task Force and how it is being used to define a roadmap for near and long-term Biological and Physical Research objectives that supports NASA's Vision and Mission. Additionally, the paper discusses further prioritizations that were necessitated by budget and ISS resource constraints in order to maximize utilization of the International Space Station. Finally, a process has been developed to integrate the requirements for this prioritized research with other agency requirements to develop an integrated ISS assembly and utilization plan that maximizes scientific output. 相似文献
The paper elaborates on “ lessons learned” from two recent ESA workshops, one focussing on the role of Innovation in the competitiveness of the space sector and the second on technology and engineering aspects conducive to better, faster and cheaper space programmes. The paper focuses primarily on four major aspects, namely:
1. a) the adaptations of industrial and public organisations to the global market needs;
2. b) the understanding of the bottleneck factors limiting competitiveness;
3. c) the trends toward new system architectures and new engineering and production methods;
4. d) the understanding of the role of new technology in the future applications.
Under the pressure of market forces and the influence of many global and regional players, applications of space systems and technology are becoming more and more competitive. It is well recognised that without major effort for innovation in industrial practices, organisations, R&D, marketing and financial approaches the European space sector will stagnate and loose its competence as well as its competitiveness. It is also recognised that a programme run according to the “better, faster, cheaper” philosophy relies on much closer integration of system design, development and verification, and draws heavily on a robust and comprehensive programme of technology development, which must run in parallel and off-line with respect to flight programmes.
A company's innovation capabilities will determine its future competitive advantage (in time, cost, performance or value) and overall growth potential. Innovation must be a process that can be counted on to provide repetitive, sustainable, long-term performance improvements. As such, it needs not depend on great breakthroughs in technology and concepts (which are accidental and rare). Rather, it could be based on bold evolution through the establishment of know-how, application of best practices, process effectiveness and high standards, performance measurement, and attention to customers and professional marketing. Having a technological lead allows industry to gain a competitive advantage in performance, cost and opportunities. Instrumental to better competitiveness is an R&D effort based on the adaptation of high technology products, capable of capturing new users, increasing production, decreasing the cost and delivery time and integrating high level of intelligence, information and autonomy. New systems will have to take in to account from the start what types of technologies are being developed or are already available in other areas outside space, and design their system accordingly. The future challenge for “faster, better, cheaper” appears to concern primarily “cost-effective”, performant autonomous spacecraft, “cost-effective”, reliable launching means and intelligent data fusion technologies and robust software serving mass- market real time services, distributed via EHF bands and Internet.
In conclusion, it can be noticed that in the past few years new approaches have considerably enlarged the ways in which space missions can be implemented. They are supported by true innovations in mission concepts, system architecture, development and technologies, in particular for the development of initiatives based on multi-mission mini-satellites platforms for communication and Earth observation missions. There are also definite limits to cost cutting (such as lowering heads counts and increasing efficiency), and therefore the strategic perspective must be shifted from the present emphasis on cost-driven enhancement to revenue-driven improvements for growth. And since the product life-cycle is continuously shortening, competitiveness is linked very strongly with the capability to generate new technology products which enhance cost/benefit performance. 相似文献