全文获取类型
收费全文 | 3292篇 |
免费 | 9篇 |
国内免费 | 11篇 |
专业分类
航空 | 1745篇 |
航天技术 | 1116篇 |
综合类 | 12篇 |
航天 | 439篇 |
出版年
2019年 | 19篇 |
2018年 | 39篇 |
2017年 | 21篇 |
2016年 | 23篇 |
2014年 | 56篇 |
2013年 | 82篇 |
2012年 | 66篇 |
2011年 | 114篇 |
2010年 | 86篇 |
2009年 | 123篇 |
2008年 | 180篇 |
2007年 | 93篇 |
2006年 | 65篇 |
2005年 | 79篇 |
2004年 | 81篇 |
2003年 | 107篇 |
2002年 | 56篇 |
2001年 | 103篇 |
2000年 | 49篇 |
1999年 | 80篇 |
1998年 | 94篇 |
1997年 | 79篇 |
1996年 | 92篇 |
1995年 | 124篇 |
1994年 | 103篇 |
1993年 | 69篇 |
1992年 | 105篇 |
1991年 | 42篇 |
1990年 | 38篇 |
1989年 | 94篇 |
1988年 | 34篇 |
1987年 | 30篇 |
1986年 | 32篇 |
1985年 | 101篇 |
1984年 | 94篇 |
1983年 | 59篇 |
1982年 | 82篇 |
1981年 | 97篇 |
1980年 | 34篇 |
1979年 | 43篇 |
1978年 | 34篇 |
1977年 | 22篇 |
1976年 | 22篇 |
1975年 | 39篇 |
1974年 | 25篇 |
1973年 | 18篇 |
1972年 | 30篇 |
1971年 | 17篇 |
1969年 | 17篇 |
1967年 | 20篇 |
排序方式: 共有3312条查询结果,搜索用时 15 毫秒
221.
R. A. Masterson M. Chodas L. Bayley B. Allen J. Hong P. Biswas C. McMenamin K. Stout E. Bokhour H. Bralower D. Carte S. Chen M. Jones S. Kissel F. Schmidt M. Smith G. Sondecker L. F. Lim D. S. Lauretta J. E. Grindlay R. P. Binzel 《Space Science Reviews》2018,214(1):48
The Regolith X-ray Imaging Spectrometer (REXIS) is the student collaboration experiment proposed and built by an MIT-Harvard team, launched aboard NASA’s OSIRIS-REx asteroid sample return mission. REXIS complements the scientific investigations of other OSIRIS-REx instruments by determining the relative abundances of key elements present on the asteroid’s surface by measuring the X-ray fluorescence spectrum (stimulated by the natural solar X-ray flux) over the range of energies 0.5 to 7 keV. REXIS consists of two components: a main imaging spectrometer with a coded aperture mask and a separate solar X-ray monitor to account for the Sun’s variability. In addition to element abundance ratios (relative to Si) pinpointing the asteroid’s most likely meteorite association, REXIS also maps elemental abundance variability across the asteroid’s surface using the asteroid’s rotation as well as the spacecraft’s orbital motion. Image reconstruction at the highest resolution is facilitated by the coded aperture mask. Through this operation, REXIS will be the first application of X-ray coded aperture imaging to planetary surface mapping, making this student-built instrument a pathfinder toward future planetary exploration. To date, 60 students at the undergraduate and graduate levels have been involved with the REXIS project, with the hands-on experience translating to a dozen Master’s and Ph.D. theses and other student publications. 相似文献
222.
E. H. B. M. Gronenschild R. Mewe N. J. Westergaard J. Heise F. D. Seward T. Chlebowski N. P. M. Kuin A. C. Brinkman J. H. Dijkstra H. W. Schnopper 《Space Science Reviews》1981,30(1-4):185-189
The binary system Capella (G6 III + F9 III) has been observed on 1979 March 15 and on 1980 March 15–17 with the Objective Grating Spectrometer (OGS) onboard theEinstein Observatory. The spectrum measured with the 1000 l/mm grating covers the range 5–30 Å with a resolution < 1 Å. The spectra show evidence for a bimodal temperature distribution of emission measure in an optically thin plasma with one component 5 million degrees and the other one 10 million degrees. Spectral features can be identified with line emissions from O VIII, Fe XVII, Fe XVIII, Fe XXIV, and Ne X ions. Good spectral fits have been obtained assuming standard cosmic abundances. The data are interpreted in terms of emission from hot static coronal loops rather similar to the magnetic arch structures found on the Sun. It is shown that the conditions required by this model exist on Capella. Mean values of loop parameters are derived for both temperature components. 相似文献
223.
J. C. Raymond 《Space Science Reviews》1999,87(1-2):55-66
Order of magnitude variations in relative elemental abundances are observed in the solar corona and solar wind. The instruments
aboard SOHO make it possible to explore these variations in detail to determine whether they arise near the solar surface
or higher in the corona. A substantial enhancement of low First Ionization Potential (FIP) elements relative to high FIP elements
is often seen in both the corona and the solar wind, and that must arise in the chromosphere. Several theoretical models have
been put forward to account for the FIP effect, but as yet even the basic physical mechanism responsible remains an open question.
Evidence for gravitational settling is also found at larger heights in quiescent streamers. The question is why the heavier
elements don't settle out completely.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
224.
E.S. Seo T. Anderson D. Angelaszek S.J. Baek J. Baylon M. Buénerd M. Copley S. Coutu L. Derome B. Fields M. Gupta J.H. Han I.J. Howley H.G. Huh Y.S. Hwang H.J. Hyun I.S. Jeong D.H. Kah K.H. Kang D.Y. Kim H.J. Kim K.C. Kim M.H. Kim K. Kwashnak J. Lee M.H. Lee J.T. Link L. Lutz A. Malinin A. Menchaca-Rocha J.W. Mitchell S. Nutter O. Ofoha H. Park I.H. Park J.M. Park P. Patterson J.R. Smith J. Wu Y.S. Yoon 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
The Cosmic Ray Energetics And Mass (CREAM) instrument is configured with a suite of particle detectors to measure TeV cosmic-ray elemental spectra from protons to iron nuclei over a wide energy range. The goal is to extend direct measurements of cosmic-ray composition to the highest energies practical, and thereby have enough overlap with ground based indirect measurements to answer questions on cosmic-ray origin, acceleration and propagation. The balloon-borne CREAM was flown successfully for about 161 days in six flights over Antarctica to measure elemental spectra of Z = 1–26 nuclei over the energy range 1010 to >1014 eV. Transforming the balloon instrument into ISS-CREAM involves identification and replacement of components that would be at risk in the International Space Station (ISS) environment, in addition to assessing safety and mission assurance concerns. The transformation process includes rigorous testing of components to reduce risks and increase survivability on the launch vehicle and operations on the ISS without negatively impacting the heritage of the successful CREAM design. The project status, including results from the ongoing analysis of existing data and, particularly, plans to increase the exposure factor by another order of magnitude utilizing the International Space Station are presented. 相似文献
225.
L. Maraschi G. C. Perola A. Treves 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1981,1(13):67-70
The possibility of explaining the continuous emission of active galactic nuclei in the frame of a model of spherical accretion onto a massive black hole is discussed. Cool inhomogeneities (T 104°K) within the accretion flow could be responsible for the broad line emission if half of the accreting matter is in the dense phase. A crucial test of this hypothesis is the expected correlation between the ratio of the luminosity in lines to the total luminosity and the hardness of the continuous spectrum. 相似文献
226.
Messenger S. Stadermann F.J. Floss C. Nittler L.R. Mukhopadhyay S. 《Space Science Reviews》2003,106(1-4):155-172
Interplanetary dust particles collected in the stratosphere frequently exhibit enrichments in deuterium (D) and 15N relative to terrestrial materials. These effects are most likely due to the preservation of presolar interstellar materials.
While the elevated D/H ratios probably resulted from mass fractionation during chemical reactions at very low < 100 K temperatures,
the origin of the N isotopic anomalies remains unresolved. The bulk of the N-bearing material may have obtained its isotopic
signatures from low temperature chemistry, but a nucleosynthetic origin is also possible.
This revised version was published online in August 2006 with corrections to the Cover Date. 相似文献
227.
G. Hasinger W. Pietsch C. Reppin J. Trümper W. Voges E. Kendziorra R. Staubert 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1984,3(10-12)
The Crab was observed in a balloon flight from Palestine/Texas on 9/28/81 at hard X-ray energies (20–200 keV). The light curve is significantly sharper than reported previously for this energy range. The pulse-averaged as well as the interpulse spectra show breaks in our energy-range. The variation of spectral index across the pulse has an amplitude similar to that found at lower energies by OSO-8 and larger than reported by HEAO-1 A4 at hard X-rays. For a sharp emission line at 77 keV a 99% upper limit of 1.0*10−3 photons/ cm2 sec can be placed, a factor of 4 lower than line fluxes reported previously. Pulse-shape fits to the optical, X-ray, hard X-ray and gamma ray light-curves reveal a consistent picture of the origin of the interpulse and off-pulse emission, the breaks in the spectra and the variation of spectral index, providing arguments against a thermal component and also a polar cap emission model for NP0532. 相似文献
228.
Saunders R.S. Arvidson R.E. Badhwar G.D. Boynton W.V. Christensen P.R. Cucinotta F.A. Feldman W.C. Gibbs R.G. Kloss C. Landano M.R. Mase R.A. McSmith G.W. Meyer M.A. Mitrofanov I.G. Pace G.D. Plaut J.J. Sidney W.P. Spencer D.A. Thompson T.W. Zeitlin C.J. 《Space Science Reviews》2004,110(1-2):1-36
The 2001 Mars Odyssey spacecraft, now in orbit at Mars, will observe the Martian surface at infrared and visible wavelengths to determine surface mineralogy and morphology, acquire global gamma ray and neutron observations for a full Martian year, and study the Mars radiation environment from orbit. The science objectives of this mission are to: (1) globally map the elemental composition of the surface, (2) determine the abundance of hydrogen in the shallow subsurface, (3) acquire high spatial and spectral resolution images of the surface mineralogy, (4) provide information on the morphology of the surface, and (5) characterize the Martian near-space radiation environment as related to radiation-induced risk to human explorers. To accomplish these objectives, the 2001 Mars Odyssey science payload includes a Gamma Ray Spectrometer (GRS), a multi-spectral Thermal Emission Imaging System (THEMIS), and a radiation detector, the Martian Radiation Environment Experiment (MARIE). THEMIS and MARIE are mounted on the spacecraft with THEMIS pointed at nadir. GRS is a suite of three instruments: a Gamma Subsystem (GSS), a Neutron Spectrometer (NS) and a High-Energy Neutron Detector (HEND). The HEND and NS instruments are mounted on the spacecraft body while the GSS is on a 6-m boom. Some science data were collected during the cruise and aerobraking phases of the mission before the prime mission started. THEMIS acquired infrared and visible images of the Earth-Moon system and of the southern hemisphere of Mars. MARIE monitored the radiation environment during cruise. The GRS collected calibration data during cruise and aerobraking. Early GRS observations in Mars orbit indicated a hydrogen-rich layer in the upper meter of the subsurface in the Southern Hemisphere. Also, atmospheric densities, scale heights, temperatures, and pressures were observed by spacecraft accelerometers during aerobraking as the spacecraft skimmed the upper portions of the Martian atmosphere. This provided the first in-situ evidence of winter polar warming in the Mars upper atmosphere. The prime mission for 2001 Mars Odyssey began in February 2002 and will continue until August 2004. During this prime mission, the 2001 Mars Odyssey spacecraft will also provide radio relays for the National Aeronautics and Space Administration (NASA) and European landers in early 2004. Science data from 2001 Mars Odyssey instruments will be provided to the science community via NASA’s Planetary Data System (PDS). The first PDS release of Odyssey data was in October 2002; subsequent releases occur every 3 months. 相似文献
229.
综述了近十余年来关联大系统强稳定性的研究进展.指出了系统可靠性研究与强稳定性研究之间的关系,给出了强稳定性研究的主要结果以及强稳定性的各种定义方法.文中着重分析了强稳定方法的研究途径和主要不足方面,并探讨了强稳定性研究的发展趋势. 相似文献
230.