Early warning systems represent an innovative and effective approach to mitigate the risk associated with natural hazards. Early warning technologies are now available for almost all natural hazards and systems are already in operation in all parts of the world. Nevertheless, recent disasters such as the Indian Ocean tsunami in 2004 and Katrina hurricane in 2005, highlighted inadequacies in early warning technologies.
Efforts towards the development of a global warning system are necessary for turning the tide in early warning processes and technologies. There is a pressing need for a globally comprehensive early warning system based on existing systems. The global system should be a mechanism which can consolidate scientific information and evidences, package this knowledge in a form usable to international and national decision makers and actively disseminate this information to those users.
The proposed Global Environmental Alert Service (GEAS) will provide information emanating from monitoring, Earth observing and early warning systems to users in a near-real-time mode and bridge the gap between the scientific community and policy makers. Characteristics and operational aspects of such a service, GEAS, are discussed. 相似文献
Development of reliable and robust strategies for long-term life support for planetary exploration must be built from real-time experimentation to verify and improve system components. Also critical is incorporating a range of viable options to handle potential short-term life system imbalances. This paper revisits some of the conceptual framework for a Mars base prototype which has been developed by the authors along with others previously advanced (“Mars on Earth®”) in the light of three years of experimentation in the Laboratory Biosphere, further investigation of system alternatives and the advent of other innovative engineering and agri-ecosystem approaches. Several experiments with candidate space agriculture crops have demonstrated the higher productivity possible with elevated light levels and improved environmental controls. For example, crops of sweet potatoes exceeded original Mars base prototype projections by an average of 46% (53% for best crop) ultradwarf (Apogee) wheat by 9% (23% for best crop), pinto bean by 13% (31% for best crop). These production levels, although they may be increased with further optimization of lighting regimes, environmental parameters, crop density etc. offer evidence that a soil-based system can be as productive as the hydroponic systems which have dominated space life support scenarios and research. But soil also offers distinct advantages: the capability to be created on the Moon or Mars using in situ space resources, reduces long-term reliance on consumables and imported resources, and more readily recycling and incorporating crew and crop waste products. In addition, a living soil contains a complex microbial ecosystem which helps prevent the buildup of trace gases or compounds, and thus assist with air and water purification. The atmospheric dynamics of these crops were studied in the Laboratory Biosphere adding to the database necessary for managing the mixed stands of crops essential for supplying a nutritionally adequate diet in space. This paper explores some of the challenges of small bioregenerative life support: air-sealing and facility architecture/design, balance of short-term variations of carbon dioxide and oxygen through staggered plantings, options for additional atmospheric buffers and sinks, lighting/energy efficiency engineering, crop and waste product recycling approaches, and human factor considerations in the design and operation of a Mars base. An “Earth to Mars” project, forging the ability to live sustainably in space (as on Earth) requires continued research and testing of these components and integrated subsystems; and developing a step-by-step learning process. 相似文献
This paper will review the potential of a relatively new type of testbed platform for environmental education and research because of the unique advantages resulting from their material closure and separation from the outside environment. These facilities which we term “modular biospheres”, have emerged from research centered on space life support research but offer a wider range of application. Examples of this type of facility include the Bios-3 facility in Russia, the Japanese CEEF (Closed Ecological Experiment Facility), the NASA Kennedy Space Center Breadboard facility, the Biosphere 2 Test Module and the Laboratory Biosphere. Modular biosphere facilities offer unique research and public real-time science education opportunities. Ecosystem behavior can be studied since initial state conditions can be precisely specified and tracked over different ranges of time. With material closure (apart from very small air exchange rate which can be determined), biogeochemical cycles between soil and soil microorganisms, water, plants, and atmosphere can be studied in detail. Such studies offer a major advance from studies conducted with phytotrons which because of their small size, limit the number of organisms to a very small number, and which crucially do not have a high degree of atmospheric, water and overall material closure. Modular biospheres take advantage of the unique properties of closure, as representing a distinct system “metabolism” and therefore are essentially a “mini-world”. Though relatively large in comparison with most phytotrons and ecological microcosms, which are now standard research and educational tools, modular biospheres are small enough that they can be economically reconfigured to reflect a changing research agenda. Some design elements include lighting via electric lights and/or sunlight, hydroponic or soil substrate for plants, opaque or glazed structures, and variable volume chambers or other methods to handle atmospheric pressure differences between the facility and the outside environment. 相似文献
We discuss current progress and future plans for the general antiparticle spectrometer experiment (GAPS). GAPS detects antideuterons through the X-rays and pions emitted during the deexcitation of exotic atoms formed when the antideuterons are slowed down and stopped in targets. GAPS provides an exceptionally sensitive means to detect cosmic-ray antideuterons. Cosmic-ray antideuterons can provide indirect evidence for the existence of dark matter in such form as neutralinos or Kaluza–Klein particles. We describe results of accelerator testing of GAPS prototypes, tentative design concepts for a flight GAPS detector, and near-term plans for flying a GAPS prototype on a balloon. 相似文献
The unusual core-collapse supernova 1986J, in the nearby spiral NGC 891, is the first modern supernova in which evidence of a compact remnant of the supernova has been seen. This evidence comes from recent VLBI images, which show the emergence of a new radio component in the center of the expanding radio shell. The new component shows an inverted radio spectrum contrasting with that of the shell. The new component is likely radio emission associated with the black-hole or neutron star compact remnant of the explosion, which would mark the first direct observational link between a modern supernova and such a compact remnant. We report here on our recent VLBI images at 22 and 5 GHz, as well as on our monitoring of the integrated radio spectrum of SN 1986J. In the 22 GHz image, the central component is marginally resolved. 相似文献
The investigation of the general properties of non-thermal (NT) X-ray shell supernova remnants (SNRs), of which SN 1006 is the prototype, is important to understand how electrons are accelerated in SNR shocks and what is the origin of cosmic rays. Using the XMM-Newton satellite, we are carrying on a survey of putative non-thermal SNR candidates previously unknown or little studied in the X-ray band, in order to investigate the different manifestations of NT emission in SNR shells. The SNRs we have selected are likely to expand in a low density medium, and therefore to have a low thermal X-ray emission, that usually outshines the non-thermal one. We report here preliminary results obtained on the SNR shell DA 530. 相似文献
Several forms of sequential hypothesis testing algorithms are described and their performance as classification algorithms for automatic target recognition is evaluated and compared. Several forms of parameteric algorithms, as well as a sequential form of a useful nonparametric algorithm are considered. The primary focus is the design of algorithms for automatic target recognition that produce maximally reliable decisions while requiring, on the average, a minimum number of backscatter measurements. The tradeoffs between the average number of required measurements and the error performance of the resulting algorithms are compared by means of Monte-Carlo simulation studies 相似文献
Space Science Reviews - Analysis of Homestake, Gallex and GNO measurements reveals evidence of variability of presumed solar-neutrino-flux measurements. Analysis of Super-Kamiokande neutrino... 相似文献