首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   117篇
  免费   0篇
航空   63篇
航天技术   22篇
航天   32篇
  2021年   1篇
  2017年   1篇
  2016年   1篇
  2015年   3篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2011年   5篇
  2010年   4篇
  2009年   5篇
  2008年   8篇
  2007年   1篇
  2006年   2篇
  2005年   5篇
  2004年   7篇
  2003年   2篇
  2002年   1篇
  2001年   2篇
  2000年   3篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1995年   3篇
  1994年   3篇
  1993年   3篇
  1992年   4篇
  1991年   2篇
  1990年   1篇
  1988年   2篇
  1986年   2篇
  1985年   1篇
  1984年   4篇
  1983年   4篇
  1981年   1篇
  1980年   3篇
  1979年   3篇
  1978年   2篇
  1977年   1篇
  1976年   3篇
  1975年   3篇
  1974年   1篇
  1972年   1篇
  1971年   1篇
  1970年   1篇
  1969年   2篇
  1968年   1篇
  1967年   3篇
  1966年   1篇
排序方式: 共有117条查询结果,搜索用时 31 毫秒
21.
22.
Instability of the present LEO satellite populations   总被引:1,自引:1,他引:0  
Several studies conducted during 1991–2001 demonstrated, with some assumed launch rates, the future unintended growth potential of the Earth satellite population, resulting from random, accidental collisions among resident space objects. In some low Earth orbit (LEO) altitude regimes where the number density of satellites is above a critical spatial density, the production rate of new breakup debris due to collisions would exceed the loss of objects due to orbital decay.  相似文献   
23.
The Magnetic Field of Mercury   总被引:1,自引:0,他引:1  
The magnetic field strength of Mercury at the planet’s surface is approximately 1% that of Earth’s surface field. This comparatively low field strength presents a number of challenges, both theoretically to understand how it is generated and observationally to distinguish the internal field from that due to the solar wind interaction. Conversely, the small field also means that Mercury offers an important opportunity to advance our understanding both of planetary magnetic field generation and magnetosphere-solar wind interactions. The observations from the Mariner 10 magnetometer in 1974 and 1975, and the MESSENGER Magnetometer and plasma instruments during the probe’s first two flybys of Mercury on 14 January and 6 October 2008, provide the basis for our current knowledge of the internal field. The external field arising from the interaction of the magnetosphere with the solar wind is more prominent near Mercury than for any other magnetized planet in the Solar System, and particular attention is therefore paid to indications in the observations of deficiencies in our understanding of the external field. The second MESSENGER flyby occurred over the opposite hemisphere from the other flybys, and these newest data constrain the tilt of the planetary moment from the planet’s spin axis to be less than 5°. Considered as a dipole field, the moment is in the range 240 to 270 nT-R M 3 , where R M is Mercury’s radius. Multipole solutions for the planetary field yield a smaller dipole term, 180 to 220 nT-R M 3 , and higher-order terms that together yield an equatorial surface field from 250 to 290 nT. From the spatial distribution of the fit residuals, the equatorial data are seen to reflect a weaker northward field and a strongly radial field, neither of which can be explained by a centered-dipole matched to the field measured near the pole by Mariner 10. This disparity is a major factor controlling the higher-order terms in the multipole solutions. The residuals are not largest close to the planet, and when considered in magnetospheric coordinates the residuals indicate the presence of a cross-tail current extending to within 0.5R M altitude on the nightside. A near-tail current with a density of 0.1 μA/m2 could account for the low field intensities recorded near the equator. In addition, the MESSENGER flybys include the first plasma observations from Mercury and demonstrate that solar wind plasma is present at low altitudes, below 500 km. Although we can be confident in the dipole-only moment estimates, the data in hand remain subject to ambiguities for distinguishing internal from external contributions. The anticipated observations from orbit at Mercury, first from MESSENGER beginning in March 2011 and later from the dual-spacecraft BepiColombo mission, will be essential to elucidate the higher-order structure in the magnetic field of Mercury that will reveal the telltale signatures of the physics responsible for its generation.  相似文献   
24.
The output of a realizable balanced frequency discriminator is calculated for an input consisting of a sine wave plus Gaussian noise. Explicit autocorrelation and power spectra are found for one practical embodiment of the discriminator for various input carrier-to-noise ratios, with the carrier tuned to center frequency and also off-center. The formulas also permit the calculation of the output for the case of a spectrum of noise slowly swept through the discriminator. Although qualitatively similar to results previously obtained with an ideal discriminator, substantial differences are also found. Measurements are made that closely verified the theoretical results. No limiting is assumed.  相似文献   
25.
The Cassini-Huygens Cosmic Dust Analyzer (CDA) is intended to provide direct observations of dust grains with masses between 10−19 and 10−9 kg in interplanetary space and in the jovian and saturnian systems, to investigate their physical, chemical and dynamical properties as functions of the distances to the Sun, to Jupiter and to Saturn and its satellites and rings, to study their interaction with the saturnian rings, satellites and magnetosphere. Chemical composition of interplanetary meteoroids will be compared with asteroidal and cometary dust, as well as with Saturn dust, ejecta from rings and satellites. Ring and satellites phenomena which might be effects of meteoroid impacts will be compared with the interplanetary dust environment. Electrical charges of particulate matter in the magnetosphere and its consequences will be studied, e.g. the effects of the ambient plasma and the magnetic field on the trajectories of dust particles as well as fragmentation of particles due to electrostatic disruption.The investigation will be performed with an instrument that measures the mass, composition, electric charge, speed, and flight direction of individual dust particles. It is a highly reliable and versatile instrument with a mass sensitivity 106 times higher than that of the Pioneer 10 and 11 dust detectors which measured dust in the saturnian system. The Cosmic Dust Analyzer has significant inheritance from former space instrumentation developed for the VEGA, Giotto, Galileo, and Ulysses missions. It will reliably measure impacts from as low as 1 impact per month up to 104 impacts per second. The instrument weighs 17 kg and consumes 12 W, the integrated time-of-flight mass spectrometer has a mass resolution of up to 50. The nominal data transmission rate is 524 bits/s and varies between 50 and 4192 bps.This revised version was published online in July 2005 with a corrected cover date.  相似文献   
26.
The Cassini Imaging Science Subsystem (ISS) is the highest-resolution two-dimensional imaging device on the Cassini Orbiter and has been designed for investigations of the bodies and phenomena found within the Saturnian planetary system. It consists of two framing cameras: a narrow angle, reflecting telescope with a 2-m focal length and a square field of view (FOV) 0.35 across, and a wide-angle refractor with a 0.2-m focal length and a FOV 3.5 across. At the heart of each camera is a charged coupled device (CCD) detector consisting of a 1024 square array of pixels, each 12 μ on a side. The data system allows many options for data collection, including choices for on-chip summing, rapid imaging and data compression. Each camera is outfitted with a large number of spectral filters which, taken together, span the electromagnetic spectrum from 200 to 1100 nm. These were chosen to address a multitude of Saturn-system scientific objectives: sounding the three-dimensional cloud structure and meteorology of the Saturn and Titan atmospheres, capturing lightning on both bodies, imaging the surfaces of Saturn’s many icy satellites, determining the structure of its enormous ring system, searching for previously undiscovered Saturnian moons (within and exterior to the rings), peering through the hazy Titan atmosphere to its yet-unexplored surface, and in general searching for temporal variability throughout the system on a variety of time scales. The ISS is also the optical navigation instrument for the Cassini mission. We describe here the capabilities and characteristics of the Cassini ISS, determined from both ground calibration data and in-flight data taken during cruise, and the Saturn-system investigations that will be conducted with it. At the time of writing, Cassini is approaching Saturn and the images returned to Earth thus far are both breathtaking and promising.This revised version was published online in July 2005 with a corrected cover date.  相似文献   
27.
28.
A panel session held at the 1965 Aerospace Conference, Houston,Tex., June 23, 1965. Panelists discussed Life-Suppport interfaces with Electric Power; Communications; Navigation; System Integration for Future Space Programs; and Reliability.  相似文献   
29.
The practical implementation of the ESPRIT algorithm into direction-finding system architecture is considered. In particular, the problems of phase ambiguity resolution for extended array separations and multidimensional azimuth/elevation estimation are addressed. Generalized solutions for these problems are proposed, and a bearing quality indicator that provides a measure of credibility associated with each angle-of-arrival estimate is developed. Plots of computer simulated performance are presented in order to assess the probability of detection, of failure to alarm, and of false alarm as a function of azimuthal separation and period of signal observation  相似文献   
30.
Sounding rocket experiment of bare electrodynamic tether system   总被引:1,自引:0,他引:1  
An overview of a sounding rocket, S-520-25th, project on space tether technology experiment is presented. The project is prepared by an international research group consisting of Japanese, European, American, and Australian researchers. The sounding rocket will be assembled by the ISAS/JAXA and will be launched in the summer of 2009. The sounding rocket mission includes two engineering experiments and two scientific experiments. These experiments consist of the deployment of bare electrodynamic tape tether in space, a quick ignition test of hollow cathode system in space, the demonstration of bare electrodynamic tether system in space, and the test of the OML (orbital-motion-limit) current collection theory.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号