首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   117篇
  免费   0篇
航空   63篇
航天技术   22篇
航天   32篇
  2021年   1篇
  2017年   1篇
  2016年   1篇
  2015年   3篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2011年   5篇
  2010年   4篇
  2009年   5篇
  2008年   8篇
  2007年   1篇
  2006年   2篇
  2005年   5篇
  2004年   7篇
  2003年   2篇
  2002年   1篇
  2001年   2篇
  2000年   3篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1995年   3篇
  1994年   3篇
  1993年   3篇
  1992年   4篇
  1991年   2篇
  1990年   1篇
  1988年   2篇
  1986年   2篇
  1985年   1篇
  1984年   4篇
  1983年   4篇
  1981年   1篇
  1980年   3篇
  1979年   3篇
  1978年   2篇
  1977年   1篇
  1976年   3篇
  1975年   3篇
  1974年   1篇
  1972年   1篇
  1971年   1篇
  1970年   1篇
  1969年   2篇
  1968年   1篇
  1967年   3篇
  1966年   1篇
排序方式: 共有117条查询结果,搜索用时 734 毫秒
51.
In 1996 the NASA Advisory Council asked for a comprehensive look at future launch projections out to the year 2030 and beyond. In response to this request NASA sponsored a study at The Aerospace Corporation to develop long-range space transportation models for future commercial and government applications, and to analyze the design considerations and desired characteristics for future space transportation systems. Follow-ons to present space missions as well as a wide array of potential new space applications are considered in the study. This paper summarizes the space transportation system characteristics required to enable various classes of future missions. High reliability and the ability to achieve high flight rates per vehicle are shown to be key attributes for achieving more economical launch systems. Technical, economic and policy implications are also discussed.  相似文献   
52.
53.
The near-Earth orbital debris population will continue to increase in the future due to ongoing space activities, on-orbit explosions, and accidental collisions among resident space objects. Commonly adopted mitigation measures, such as limiting postmission orbital lifetimes of satellites to less than 25 years, will slow down the population growth, but will be insufficient to stabilize the environment. To better limit the growth of the future debris population, the remediation option, i.e., removing existing large and massive objects from orbit, needs to be considered. This paper does not intend to address the technical or economical issues for active debris removal. Rather, the objective is to provide a sensitivity study to illustrate and quantify the effectiveness of various remediation options. An effective removal criterion based upon mass and collision probability is developed. This study includes simulations with removal rates ranging from 5 to 20 objects per year, starting in the year 2020. The outcome of each simulation is analyzed and compared with others. The summary of the study serves as a general guideline for future debris removal consideration.  相似文献   
54.
The Astrobiology Primer has been created as a reference tool for those who are interested in the interdisciplinary field of astrobiology. The field incorporates many diverse research endeavors, but it is our hope that this slim volume will present the reader with all he or she needs to know to become involved and to understand, at least at a fundamental level, the state of the art. Each section includes a brief overview of a topic and a short list of readable and important literature for those interested in deeper knowledge. Because of the great diversity of material, each section was written by a different author with a different expertise. Contributors, authors, and editors are listed at the beginning, along with a list of those chapters and sections for which they were responsible. We are deeply indebted to the NASA Astrobiology Institute (NAI), in particular to Estelle Dodson, David Morrison, Ed Goolish, Krisstina Wilmoth, and Rose Grymes for their continued enthusiasm and support. The Primer came about in large part because of NAI support for graduate student research, collaboration, and inclusion as well as direct funding. We have entitled the Primer version 1 in hope that it will be only the first in a series, whose future volumes will be produced every 3-5 years. This way we can insure that the Primer keeps up with the current state of research. We hope that it will be a great resource for anyone trying to stay abreast of an ever-changing field.  相似文献   
55.
56.
In plants, sensitive and selective mechanisms have evolved to perceive and respond to light and gravity. We investigated the effects of microgravity on the growth and development of Arabidopsis thaliana (ecotype Landsberg) in a spaceflight experiment. These studies were performed with the Biological Research in Canisters (BRIC) hardware system in the middeck region of the space shuttle during mission STS-131 in April 2010. Seedlings were grown on nutrient agar in Petri dishes in BRIC hardware under dark conditions and then fixed in flight with paraformaldehyde, glutaraldehyde, or RNAlater. Although the long-term objective was to study the role of the actin cytoskeleton in gravity perception, in this article we focus on the analysis of morphology of seedlings that developed in microgravity. While previous spaceflight studies noted deleterious morphological effects due to the accumulation of ethylene gas, no such effects were observed in seedlings grown with the BRIC system. Seed germination was 89% in the spaceflight experiment and 91% in the ground control, and seedlings grew equally well in both conditions. However, roots of space-grown seedlings exhibited a significant difference (compared to the ground controls) in overall growth patterns in that they skewed to one direction. In addition, a greater number of adventitious roots formed from the axis of the hypocotyls in the flight-grown plants. Our hypothesis is that an endogenous response in plants causes the roots to skew and that this default growth response is largely masked by the normal 1?g conditions on Earth.  相似文献   
57.
The euphoria surrounding the maiden voyage of the Buran space shuttle seemed to evaporate in 1989, and the Soviet space programme entered a critical period of re-evaluation and self-criticism. Setbacks dogged the Mir, Phobos and other programmes, though there did not appear to be a launch failure throughout the year. Public debate was dominated by economic issues, though useful figures are hard to obtain.  相似文献   
58.
Techniques for storing and converting energy from one form to another are examined. The parameters of interest are storage density (in terms of both energy and power), conversion efficiency, and number of steps in the conversion process. The techniques compared are electrostatic, magnetic, inertial, chemical, thermal, and nuclear. Each technique for storage is discussed in terms of the ease with which the energy can be converted to electricity for powering lightweight compact power systems for a variety of uses. The storage density associated with the various mechanisms spans an enormous range (~0.5 MJ/kg to ~105 MJ/kg). The impact upon time-to-refuel within the context of mobile tactical army applications is discussed  相似文献   
59.
This paper considers the problem of passive geolocation for the case of HF multipath propagation. A new technique is developed for the estimation of interpath time delay applying the multiple signal classification (MUSIC) superresolution spectral estimation method. The technique samples the signals received by two spatially separated antennas to compute the normalized MUSIC cepstrum. The method is applied to experimental data in a preliminary proof-of-concept analysis  相似文献   
60.
Two ground-based methods of weightlessness simulation--a computer model of erythropoiesis feedback regulation and bedrest--were used to investigate the mechanisms which lead to loss of red cell mass during spaceflight. Both methods were used to simulate the first Skylab mission of 28 days. Human bedrest subjects lose red cell mass linearly with time and in this study the loss was 6.7% at the end of four weeks (compared to 14% in Skylab). Postbedrest recovery of red cell mass was delayed for two weeks during which time a further decline in this quantity was noted. This is consistent with the first Skylab mission but not with the two longer flights of two and three months. Hemoconcentration, observed early in the study, was essentially maintained despite red cell loss because of continued loss of plasma volume. The computer model, using the time-varying hematocrit data to estimate red cell production rates, predicted dynamic behavior of plasma volume and red cell mass that was in close agreement with the measured values. The results support the hypothesis that red cell loss during supine bedrest is a normal physiological feedback process in response to hemoconcentration enhanced tissue oxygenation and suppression of red cell production. In contrast, the delayed postbedrest recovery of red cell mass was more difficult to explain, especially in the light of enhanced reticulocyte indices observed at the onset on ambulation. Model simulation suggested the possibilities, still to be experimentally demonstrated, that this period was marked by some combination of increased oxygen-hemoglobin affinity, small reductions in mean red cell life span, ineffective erythropoiesis, or abnormal reticulocytosis. The question of whether hemoconcentration is the sole contributor to spaceflight red cell losses also remains to be resolved.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号