首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   406篇
  免费   1篇
  国内免费   2篇
航空   162篇
航天技术   82篇
综合类   3篇
航天   162篇
  2021年   3篇
  2019年   5篇
  2018年   5篇
  2017年   5篇
  2016年   2篇
  2015年   3篇
  2014年   8篇
  2013年   16篇
  2012年   7篇
  2011年   38篇
  2010年   15篇
  2009年   31篇
  2008年   19篇
  2007年   19篇
  2006年   19篇
  2005年   11篇
  2004年   9篇
  2003年   17篇
  2002年   9篇
  2001年   6篇
  2000年   15篇
  1999年   9篇
  1998年   10篇
  1997年   6篇
  1996年   9篇
  1995年   4篇
  1994年   5篇
  1993年   2篇
  1992年   2篇
  1991年   4篇
  1989年   5篇
  1988年   6篇
  1987年   4篇
  1986年   13篇
  1985年   16篇
  1984年   2篇
  1983年   4篇
  1982年   2篇
  1981年   4篇
  1980年   4篇
  1979年   3篇
  1978年   2篇
  1974年   2篇
  1973年   4篇
  1970年   2篇
  1968年   6篇
  1967年   7篇
  1966年   3篇
  1965年   1篇
  1963年   1篇
排序方式: 共有409条查询结果,搜索用时 15 毫秒
401.
Computational prediction of airfoil dynamic stall   总被引:4,自引:0,他引:4  
The term dynamic stall refers to unsteady flow separation occurring on aerodynamic bodies, such as airfoils and wings, which execute an unsteady motion. The prediction of dynamic stall is important for flight vehicle, turbomachinery, and wind turbine applications. Due to the complicated flow physics of the dynamic stall phenomenon the industry has been forced to use empirical methods for its prediction. However, recent progress in computational methods and the tremendous increase in computing power has made possible the use of the full fluid dynamic governing equations for dynamic stall investigation and prediction in the design process. It is the objective of this review to present the major approaches and results obtained in recent years and to point out existing deficiencies and possibilities for improvements. To this end, potential flow, boundary layer, viscous–inviscid interaction, and Navier–Stokes methods are described. The most commonly used numerical schemes for their solution are briefly described. Turbulence models used for the computation of high Reynolds number turbulent flows, which are of primary interest to industry, are presented. The impact of transition from laminar to turbulent flow on the dynamic stall phenomenon is discussed and currently available methods for its prediction are summarized. The main computational results obtained for airfoil and wing dynamic stall and comparisons with available experimental measurements are presented. The review concludes with a discussion of existing deficiencies and possibilities for future improvements.  相似文献   
402.
Space Science Reviews - The aurora with its associated electric fields and energetic particles affects the structure of the ionosphere, plasmaphere, and ring current. It injects protons and heavier...  相似文献   
403.
The Galileo ultraviolet spectrometer experiment uses data obtained by the Ultraviolet Spectrometer (UVS) mounted on the pointed orbiter scan platform and from the Extreme Ultraviolet Spectrometer (EUVS) mounted on the spinning part of the orbiter with the field of view perpendicular to the spin axis. The UVS is a Ebert-Fastie design that covers the range 113–432 nm with a wavelength resolution of 0.7 nm below 190 and 1.3 nm at longer wavelengths. The UVS spatial resolution is 0.4 deg × 0.1 deg for illuminated disc observations and 1 deg × 0.1 deg for limb geometries. The EUVS is a Voyager design objective grating spectrometer, modified to cover the wavelength range from 54 to 128 nm with wavelength resolution 3.5 nm for extended sources and 1.5 nm for point sources and spatial resolution of 0.87 deg × 0.17 deg. The EUVS instrument will follow up on the many Voyager UVS discoveries, particularly the sulfur and oxygen ion emissions in the Io torus and molecular and atomic hydrogen auroral and airglow emissions from Jupiter. The UVS will obtain spectra of emission, absorption, and scattering features in the unexplored, by spacecraft, 170–432 nm wavelength region. The UVS and EUVS instruments will provide a powerful instrument complement to investigate volatile escape and surface composition of the Galilean satellites, the Io plasma torus, micro- and macro-properties of the Jupiter clouds, and the composition structure and evolution of the Jupiter upper atmosphere.  相似文献   
404.
The determination of the detailed performance of an MHD-augmented high-enthalphy shock tunnel requires the simultaneous measurment of a large number of aerodynamic, electrical, and electromagnetic parameters in a test time interval of the order of several hundred microseconds. In the feasibility study currently being conducted in our laboratory of such a device, an extensive measuring system was set up and evaluated, and is being used to acquire facility performance data. This paper describes this measuring system, discusses the modifications and adaptations applied to make the various components of the system operable and compatible, and gives illustrative examples of the performance of the system.  相似文献   
405.
A study was carried out on the effects of processing and composition on the structure and properties of P/M EP741NP type alloys. The objectives of this study were to understand the role of Hf in a P/M superalloy containing high niobium used in aircraft engines and to determine the effects of extrusion and forging the powders as contrasted to HIPing (hot isostatic pressing) only. Two alloys of the P/M EP741NP composition were atomized: one alloy contained 0.26%Hf and the other was Hf free. After the as-atomized powders from both alloys were characterized, the powders were extruded into billets, forged and heat treated. After each process, the microstructures were characterized by SEM and the phases were extracted and identified by X-ray diffraction. The presence of Hf in the residues was probed by EDS (energy dispersive spectroscopy). The alloys were given the published Russian heat treatment as well as a more conventional heat treatment more typical of western powder alloys. Tensile, creep and stress rupture mechanical property tests were run. Results of the structural behavior of the alloys after each processing step will be presented and discussed. The role of the Hf on the mechanical proper- ties will be discussed.  相似文献   
406.
NASA’s MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, and Ranging) mission will further the understanding of the formation of the planets by examining the least studied of the terrestrial planets, Mercury. During the one-year orbital phase (beginning in 2011) and three earlier flybys (2008 and 2009), the X-Ray Spectrometer (XRS) onboard the MESSENGER spacecraft will measure the surface elemental composition. XRS will measure the characteristic X-ray emissions induced on the surface of Mercury by the incident solar flux. The Kα lines for the elements Mg, Al, Si, S, Ca, Ti, and Fe will be detected. The 12° field-of-view of the instrument will allow a spatial resolution that ranges from 42 km at periapsis to 3200 km at apoapsis due to the spacecraft’s highly elliptical orbit. XRS will provide elemental composition measurements covering the majority of Mercury’s surface, as well as potential high-spatial-resolution measurements of features of interest. This paper summarizes XRS’s science objectives, technical design, calibration, and mission observation strategy.  相似文献   
407.
The potential risks for late effects including cancer, cataracts, and neurological disorders due to exposures to the galactic cosmic rays (GCR) is a large concern for the human exploration of Mars. Physical models are needed to project the radiation exposures to be received by astronauts in transit to Mars and on the Mars surface, including the understanding of the modification of the GCR by the Martian atmosphere and identifying shielding optimization approaches. The Mars Global Surveyor (MGS) mission has been collecting Martian surface topographical data with the Mars Orbiter Laser Altimeter (MOLA). Here we present calculations of radiation climate maps of the surface of Mars using the MOLA data, the radiation transport model HZETRN (high charge and high energy transport), and the quantum multiple scattering fragmentation model, QMSFRG. Organ doses and the average number of particle hits per cell nucleus from GCR components (protons, heavy ions, and neutrons) are evaluated as a function of the altitude on the Martian surface. Approaches to improve the accuracy of the radiation climate map, presented here using data from the 2001 Mars Odyssey mission, are discussed.  相似文献   
408.
The performance of a uniformly spaced phased-steered line array with element channel superlimiting is studied for far-field sources consisting of 1) two sinusoidal signals with different frequencies and angular locations, and 2) a sinusoid and a noise signal at different angular locations. Attention is focused on the nonlinear case where internal noise is negligible compared to both input signals. The analysis for the two-sinusoid case gives the precise frequencies, positions, and amplitudes of all apparent sources. In addition to the two active sources, the array output has an array of images arranged symmetrically in sine space about the larger input, at intervals equal to the spacing between the two active sources. For the case of a separated sinusoid and a noise source, the analysis shows that the angular positions and average powers of the array outputs duplicate the double-sinusoid results, but the images have noise-like spectra. The analyses are confirmed by experimental results obtained with a 60-element superlimiting X-band array.  相似文献   
409.
The Lunar Orbiter Laser Altimeter (LOLA) is an instrument on the payload of NASA’s Lunar Reconnaissance Orbiter spacecraft (LRO) (Chin et al., in Space Sci. Rev. 129:391–419, 2007). The instrument is designed to measure the shape of the Moon by measuring precisely the range from the spacecraft to the lunar surface, and incorporating precision orbit determination of LRO, referencing surface ranges to the Moon’s center of mass. LOLA has 5 beams and operates at 28 Hz, with a nominal accuracy of 10 cm. Its primary objective is to produce a global geodetic grid for the Moon to which all other observations can be precisely referenced.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号