首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   406篇
  免费   1篇
  国内免费   2篇
航空   162篇
航天技术   82篇
综合类   3篇
航天   162篇
  2021年   3篇
  2019年   5篇
  2018年   5篇
  2017年   5篇
  2016年   2篇
  2015年   3篇
  2014年   8篇
  2013年   16篇
  2012年   7篇
  2011年   38篇
  2010年   15篇
  2009年   31篇
  2008年   19篇
  2007年   19篇
  2006年   19篇
  2005年   11篇
  2004年   9篇
  2003年   17篇
  2002年   9篇
  2001年   6篇
  2000年   15篇
  1999年   9篇
  1998年   10篇
  1997年   6篇
  1996年   9篇
  1995年   4篇
  1994年   5篇
  1993年   2篇
  1992年   2篇
  1991年   4篇
  1989年   5篇
  1988年   6篇
  1987年   4篇
  1986年   13篇
  1985年   16篇
  1984年   2篇
  1983年   4篇
  1982年   2篇
  1981年   4篇
  1980年   4篇
  1979年   3篇
  1978年   2篇
  1974年   2篇
  1973年   4篇
  1970年   2篇
  1968年   6篇
  1967年   7篇
  1966年   3篇
  1965年   1篇
  1963年   1篇
排序方式: 共有409条查询结果,搜索用时 15 毫秒
151.
The OSIRIS-REx Thermal Emission Spectrometer (OTES) will provide remote measurements of mineralogy and thermophysical properties of Bennu to map its surface, help select the OSIRIS-REx sampling site, and investigate the Yarkovsky effect. OTES is a Fourier Transform spectrometer covering the spectral range 5.71–100 μm (\(1750\mbox{--}100~\mbox{cm}^{-1}\)) with a spectral sample interval of \(8.66~\mbox{cm}^{-1}\) and a 6.5-mrad field of view. The OTES telescope is a 15.2-cm diameter Cassegrain telescope that feeds a flat-plate Michelson moving mirror mounted on a linear voice-coil motor assembly. A single uncooled deuterated l-alanine doped triglycine sulfate (DLATGS) pyroelectric detector is used to sample the interferogram every two seconds. Redundant ~0.855 μm laser diodes are used in a metrology interferometer to provide precise moving mirror control and IR sampling at 772 Hz. The beamsplitter is a 38-mm diameter, 1-mm thick chemical vapor deposited diamond with an antireflection microstructure to minimize surface reflection. An internal calibration cone blackbody target provides radiometric calibration. The radiometric precision in a single spectrum is \(\leq2.2 \times 10^{-8}~\mbox{W}\,\mbox{cm}^{-2}\,\mbox{sr} ^{-1}/\mbox{cm}^{-1}\) between 300 and \(1350~\mbox{cm}^{-1}\). The absolute integrated radiance error is \(<1\%\) for scene temperatures ranging from 150 to 380 K. The overall OTES envelope size is \(37.5 \times 28.9 \times 52.2~\mbox{cm}\), and the mass is 6.27 kg. The power consumption is 10.8 W average. OTES was developed by Arizona State University with Moog Broad Reach developing the electronics. OTES was integrated, tested, and radiometrically calibrated on the Arizona State University campus in Tempe, AZ.  相似文献   
152.
For the first time, empirical model of daytime vertical E×B drift based on Empirical Orthogonal functions (EOF) decomposition technique is presented. Day-to-day variability of E×B drift inferred from horizontal (H) geomagnetic field data around dip latitude for the period of 2008–2013 is used to both develop and validate the model. Results show that the EOF technique is promising with modelled values and data giving correlation coefficient values of at least 0.90 for geomagnetic conditions of both Kp?3 and Kp>3 within 2008–2013. Independent model validation shows that in situ E×B values from ion velocity meter (IVM) instrument on-board C/NOFS satellite are closer to model E×B estimates than the climatological Scherliess-Fejer (SF) model incorporated within the International Reference Ionosphere (IRI).  相似文献   
153.
The objective of the 2009 Mars Science Laboratory (MSL), which is planned to follow the Mars Exploration Rovers and the Phoenix lander to the surface of Mars, is to explore and assess quantitatively a site on Mars as a potential habitat for present or past life. Specific goals include an assessment of the past or present biological potential of the target environment and a characterization of its geology and geochemistry. Included in the 10 investigations of the MSL rover is the Sample Analysis at Mars (SAM) instrument suite, which is designed to obtain trace organic measurements, measure water and other volatiles, and measure several light isotopes with experiment sequences designed for both atmospheric and solid-phase samples. SAM integrates a gas chromatograph, a mass spectrometer, and a tunable laser spectrometer supported by sample manipulation tools both within and external to the suite. The sub-part-per-billion sensitivity of the suite for trace species, particularly organic molecules, along with a mobile platform that will contain many kilograms of organic materials, presents a considerable challenge due to the potential for terrestrial contamination to mask the signal of martian organics. We describe the effort presently underway to understand and mitigate, wherever possible within the resource constraints of the mission, terrestrial contamination in MSL and SAM measurements.  相似文献   
154.
The ultraviolet spectrograph instrument on the Juno mission (Juno-UVS) is a long-slit imaging spectrograph designed to observe and characterize Jupiter’s far-ultraviolet (FUV) auroral emissions. These observations will be coordinated and correlated with those from Juno’s other remote sensing instruments and used to place in situ measurements made by Juno’s particles and fields instruments into a global context, relating the local data with events occurring in more distant regions of Jupiter’s magnetosphere. Juno-UVS is based on a series of imaging FUV spectrographs currently in flight—the two Alice instruments on the Rosetta and New Horizons missions, and the Lyman Alpha Mapping Project on the Lunar Reconnaissance Orbiter mission. However, Juno-UVS has several important modifications, including (1) a scan mirror (for targeting specific auroral features), (2) extensive shielding (for mitigation of electronics and data quality degradation by energetic particles), and (3) a cross delay line microchannel plate detector (for both faster photon counting and improved spatial resolution). This paper describes the science objectives, design, and initial performance of the Juno-UVS.  相似文献   
155.
The Advanced Thin Ionization Calorimeter (ATIC) Balloon Experiment had a successful test flight and a science flight in 2000–01 and 2002–03 and an unsuccessful launch in 2005–06 from McMurdo, Antarctica, returning 16 and 19 days of flight data. ATIC is designed to measure the spectra of cosmic rays (protons to iron). The instrument is composed of a Silicon matrix detector followed by a carbon target interleaved with scintillator tracking layers and a segmented BGO calorimeter composed of 320 individual crystals totaling 18 radiation lengths to determine the particle energy. BGO (Bismuth Germanate) is an inorganic scintillation crystal and its light output depends not only on the energy deposited by particles but also on the temperature of the crystal. The temperature of balloon instruments during flight is not constant due to sun angle variations as well as differences in albedo from the ground. The change in output for a given energy deposit in the crystals in response to temperature variations was determined.  相似文献   
156.
157.
As well as providing practical information on Earth-besetting problems, space science and exploration are vital tools for capturing the public imagination and encouraging young people's interest in space. The relatively small scale of some scientific instruments also allows mission participation by developing countries. Citing the work of the UN and various NGOs in promoting study and distribution of space science data, the authors recommend that it be given a higher profile and suggest a number of projects -- the Mars drill study in Egypt, refurbishment of a telescope facility in Sri Lanka -- involving developing countries that should be followed up, as well as listing ongoing successful projects. The UN is urged to continue its annual workshops on space science (apparently under threat) and to ensure its inclusion in the forthcoming UNISPACE III Conference.  相似文献   
158.
Hot white dwarfs are objects that copiously emit in the Extreme Ultraviolet and soft X-ray range. They are the brightest sources seen in the Low Energy Telescope of EXOSAT, with countrates up to 25 cnts/s. in contrast to their optical and UV spectrum the total flux and spectral distribution at soft X-ray energies are highly sensitive to the effective temperature, structure and elemental composition of the dwarf's atmosphere. The imaging soft X-ray experiments onboard EXOSAT cover with large sensitivity the spectral region where the peak of emission of hot white dwarfs is expected to occur.I here review some of the (preliminary) results obtained so far with broadband X-ray photometry on a dozen or so white dwarfs, and some of the high-resolution spectra obtained for three white dwarfs with the grating spectrometers.  相似文献   
159.
Electron transparent thin sections (30–100 nm thick) of interplanetary dust particles and other fine-grained meteoritic materials are produced using an ultramicrotome equipped with a diamond knife. An analytical electron microscope (AEM) is imployed to examine indigenous physical properties (e.g. porosity), mineralogy, and petrography. Large data sets of quantitative point count analyses obtained from thin sections enable direct mineralogical comparison of IDPs and Halley.  相似文献   
160.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号