首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2862篇
  免费   3篇
  国内免费   8篇
航空   1365篇
航天技术   1070篇
综合类   8篇
航天   430篇
  2021年   16篇
  2019年   18篇
  2018年   43篇
  2017年   39篇
  2016年   27篇
  2015年   13篇
  2014年   58篇
  2013年   75篇
  2012年   54篇
  2011年   123篇
  2010年   77篇
  2009年   136篇
  2008年   167篇
  2007年   79篇
  2006年   63篇
  2005年   73篇
  2004年   78篇
  2003年   106篇
  2002年   56篇
  2001年   106篇
  2000年   61篇
  1999年   96篇
  1998年   94篇
  1997年   68篇
  1996年   70篇
  1995年   91篇
  1994年   100篇
  1993年   39篇
  1992年   61篇
  1991年   26篇
  1990年   30篇
  1989年   59篇
  1988年   26篇
  1987年   39篇
  1986年   30篇
  1985年   90篇
  1984年   44篇
  1983年   49篇
  1982年   57篇
  1981年   81篇
  1980年   29篇
  1979年   27篇
  1978年   25篇
  1977年   20篇
  1976年   16篇
  1975年   19篇
  1974年   14篇
  1972年   17篇
  1969年   13篇
  1968年   13篇
排序方式: 共有2873条查询结果,搜索用时 15 毫秒
151.
Neugebauer  M.  Steinberg  J.T.  Tokar  R.L.  Barraclough  B.L.  Dors  E.E.  Wiens  R.C.  Gingerich  D.E.  Luckey  D.  Whiteaker  D.B. 《Space Science Reviews》2003,105(3-4):661-679
Some of the objectives of the Genesis mission require the separate collection of solar wind originating in different types of solar sources. Measurements of the solar wind protons, alpha particles, and electrons are used on-board the spacecraft to determine whether the solar-wind source is most likely a coronal hole, interstream flow, or a coronal mass ejection. A simple fuzzy logic scheme operating on measurements of the proton temperature, the alpha-particle abundance, and the presence of bidirectional streaming of suprathermal electrons was developed for this purpose. Additional requirements on the algorithm include the ability to identify the passage of forward shocks, reasonable levels of hysteresis and persistence, and the ability to modify the algorithm by changes in stored constants rather than changes in the software. After a few minor adjustments, the algorithm performed well during the initial portion of the mission. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
152.
Owen  T.  Encrenaz  T. 《Space Science Reviews》2003,106(1-4):121-138
This paper reviews our present knowledge about elemental and isotopic ratios in the Giant Planets and Titan. These parameters can provide key information about the formation and evolution of these objects. Element abundances, especially after the results of the Galileo Probe Mass Spectrometer in Jupiter, strongly support the formation model invoking an initial core formation (Mizuno, 1980; Pollack et al., 1996). They also suggest that solar composition icy planetesimals (SCIPs) brought the heavy elements to Jupiter. The Jupiter value of D/H appears to be representative of the protosolar value, while the D/H enrichment observed on Uranus and Neptune is consistent with the formation scenario of these planets. The 15N/14N measurement in Jupiter seems to be representative of its protosolar value. Future measurements are expected to come from the Cassini and Herschel space mission, as well as the ALMA submillimeter observatory. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
153.
Frey  H.U.  Mende  S.B.  Immel  T.J.  Gérard  J.-C.  Hubert  B.  Habraken  S.  Spann  J.  Gladstone  G.R.  Bisikalo  D.V.  Shematovich  V.I. 《Space Science Reviews》2003,109(1-4):255-283
Direct imaging of the magnetosphere by instruments on the IMAGE spacecraft is supplemented by simultaneous observations of the global aurora in three far ultraviolet (FUV) wavelength bands. The purpose of the multi-wavelength imaging is to study the global auroral particle and energy input from the magnetosphere into the atmosphere. This paper describes the method for quantitative interpretation of FUV measurements. The Wide-Band Imaging Camera (WIC) provides broad band ultraviolet images of the aurora with maximum spatial resolution by imaging the nitrogen lines and bands between 140 and 180 nm wavelength. The Spectrographic Imager (SI), a dual wavelength monochromatic instrument, images both Doppler-shifted Lyman-α emissions produced by precipitating protons, in the SI-12 channel and OI 135.6 nm emissions in the SI-13 channel. From the SI-12 Doppler shifted Lyman-α images it is possible to obtain the precipitating proton flux provided assumptions are made regarding the mean energy of the protons. Knowledge of the proton (flux and energy) component allows the calculation of the contribution produced by protons in the WIC and SI-13 instruments. Comparison of the corrected WIC and SI-13 signals provides a measure of the electron mean energy, which can then be used to determine the electron energy flux. To accomplish this, reliable emission modeling and instrument calibrations are required. In-flight calibration using early-type stars was used to validate the pre-flight laboratory calibrations and determine long-term trends in sensitivity. In general, very reasonable agreement is found between in-situ measurements and remote quantitative determinations.  相似文献   
154.
Moore  T.E.  Collier  M.R.  Fok  M.-C.  Fuselier  S.A.  Khan  H.  Lennartsson  W.  Simpson  D.G.  Wilson  G.R.  Chandler  M.O. 《Space Science Reviews》2003,109(1-4):351-371
Development of the low energy neutral atom (LENA) imager was originally motivated by a need to remotely sense plasma heating in the topside ionosphere, with the goal of greatly enhanced temporal resolution of an otherwise familiar phenomenon. During ground test and calibration, the LENA imager was found to respond to neutral atoms with energies well above its nominal energy range of 10–750 eV, up to at least 3–4 keV, owing to sputtering interactions with its conversion surface. On orbit, LENA has been found to respond to a ubiquitous neutral atom component of the solar wind, to the neutral atoms formed by magnetosheath interactions with the geocorona during periods of high solar wind pressure, and to the interstellar neutral atoms flowing through the heliosphere during the season of maximal relative wind velocity between spacecraft and interstellar medium. LENA imaging has thus emerged as a promising new tool for studying the interplanetary medium and its interaction with the magnetosphere, in addition to the ionospheric heating and outflow that result from this interaction. LENA emissions from the ionosphere consist of a fast component that can be observed at high altitudes, and slower components that evidently create a quasi-trapped extended superthermal exosphere. The more energetic emissions are responsive to solar wind energy inputs on time scales of a few minutes.  相似文献   
155.
Far ultraviolet imaging from the IMAGE spacecraft. 2. Wideband FUV imaging   总被引:3,自引:0,他引:3  
Mende  S.B.  Heetderks  H.  Frey  H.U.  Lampton  M.  Geller  S.P.  Abiad  R.  Siegmund  O.H.W.  Tremsin  A.S.  Spann  J.  Dougani  H.  Fuselier  S.A.  Magoncelli  A.L.  Bumala  M.B.  Murphree  S.  Trondsen  T. 《Space Science Reviews》2000,91(1-2):271-285
The Far Ultraviolet Wideband Imaging Camera (WIC) complements the magnetospheric images taken by the IMAGE satellite instruments with simultaneous global maps of the terrestrial aurora. Thus, a primary requirement of WIC is to image the total intensity of the aurora in wavelength regions most representative of the auroral source and least contaminated by dayglow, have sufficient field of view to cover the entire polar region from spacecraft apogee and have resolution that is sufficient to resolve auroras on a scale of 1 to 2 latitude degrees. The instrument is sensitive in the spectral region from 140–190 nm. The WIC is mounted on the rotating IMAGE spacecraft viewing radially outward and has a field of view of 17° in the direction parallel to the spacecraft spin axis. Its field of view is 30° in the direction perpendicular to the spin axis, although only a 17°×17° image of the Earth is recorded. The optics was an all-reflective, inverted Cassegrain Burch camera using concentric optics with a small convex primary and a large concave secondary mirror. The mirrors were coated by a special multi-layer coating, which has low reflectivity in the visible and near UV region. The detector consists of a MCP-intensified CCD. The MCP is curved to accommodate the focal surface of the concentric optics. The phosphor of the image intensifier is deposited on a concave fiberoptic window, which is then coupled to the CCD with a fiberoptic taper. The camera head operates in a fast frame transfer mode with the CCD being read approximately 30 full frames (512×256 pixel) per second with an exposure time of 0.033 s. The image motion due to the satellite spin is minimal during such a short exposure. Each image is electronically distortion corrected using the look up table scheme. An offset is added to each memory address that is proportional to the image shift due to satellite rotation, and the charge signal is digitally summed in memory. On orbit, approximately 300 frames will be added to produce one WIC image in memory. The advantage of the electronic motion compensation and distortion correction is that it is extremely flexible, permitting several kinds of corrections including motions parallel and perpendicular to the predicted axis of rotation. The instrument was calibrated by applying ultraviolet light through a vacuum monochromator and measuring the absolute responsivity of the instrument. To obtain the data for the distortion look up table, the camera was turned through various angles and the input angles corresponding to a pixel matrix were recorded. It was found that the spectral response peaked at 150 nm and fell off in either direction. The equivalent aperture of the camera, including mirror reflectivities and effective photocathode quantum efficiency, is about 0.04 cm2. Thus, a 100 Rayleigh aurora is expected to produce 23 equivalent counts per pixel per 10 s exposure at the peak of instrument response.  相似文献   
156.
The Extreme Ultraviolet Imager Investigation for the IMAGE Mission   总被引:13,自引:0,他引:13  
Sandel  B.R.  Broadfoot  A.L.  Curtis  C.C.  King  R.A.  Stone  T.C.  Hill  R.H.  Chen  J.  Siegmund  O.H.W.  Raffanti  R.  Allred  DAVID D.  Turley  R. STEVEN  Gallagher  D.L. 《Space Science Reviews》2000,91(1-2):197-242
The Extreme Ultraviolet Imager (EUV) of the IMAGE Mission will study the distribution of He+ in Earth's plasmasphere by detecting its resonantly-scattered emission at 30.4 nm. It will record the structure and dynamics of the cold plasma in Earth's plasmasphere on a global scale. The 30.4-nm feature is relatively easy to measure because it is the brightest ion emission from the plasmasphere, it is spectrally isolated, and the background at that wavelength is negligible. Measurements are easy to interpret because the plasmaspheric He+ emission is optically thin, so its brightness is directly proportional to the He+ column abundance. Effective imaging of the plasmaspheric He+ requires global `snapshots in which the high apogee and the wide field of view of EUV provide in a single exposure a map of the entire plasmasphere. EUV consists of three identical sensor heads, each having a field of view 30° in diameter. These sensors are tilted relative to one another to cover a fan-shaped field of 84°×30°, which is swept across the plasmasphere by the spin of the satellite. EUVs spatial resolution is 0.6° or 0.1 R E in the equatorial plane seen from apogee. The sensitivity is 1.9 count s–1 Rayleigh–1, sufficient to map the position of the plasmapause with a time resolution of 10 min.  相似文献   
157.
Parker  D. E.  Basnett  T. A.  Brown  S. J.  Gordon  M.  Horton  E. B.  Rayner  N. A. 《Space Science Reviews》2000,94(1-2):309-320
A survey is given of the available instrumental data for monitoring and analysis of climatic variations. We focus on temperature measurements, both over land and ocean, at the surface and aloft.Over land, the older observations were subject to exposure changes which may not have been fully compensated. The effects of urbanization have been largely avoided in studies of climatic change over the last 150 years. There are few records for pre-1850 outside Europe and eastern North America, and the global network shows a recent decline. Over the ocean, sea surface temperature (SST) has been measured using buckets, engine intakes, hull sensors, buoys, and satellites. Many of these data have been effectively homogenized, but new challenges arise as observing systems evolve. Available SST and marine air temperature datasets begin in the 1850s. The data are concentrated in shipping lanes especially before 1900, and very sparse during the world wars, but additional historical data are being digitized.The radiosonde record is short (40 years) and has major gaps over the oceans, tropics and Southern Hemisphere. Instrumental heterogeneities are beginning to be assessed and removed using physical and statistical techniques. The MSU record is complete but only began in 1979, and is not highly resolved in the vertical: major biases, mainly affecting the lower-tropospheric retrieval, have been reduced as a result of recent analyses.Advanced interpolation or data-assimilation techniques are being applied to these data, but the results must be interpreted with care.  相似文献   
158.
Arnold  N.F.  Robinson  T.R. 《Space Science Reviews》2000,94(1-2):279-286
Recent observational evidence has suggested that variations in solar activity may affect winter stratospheric polar ozone and temperature levels. The paucity of direct sunlight available during this season points strongly to a dynamical mechanism. We have carried out several large ensemble experiments within the middle atmosphere and the coupled middle atmosphere and lower thermosphere to simulate the radiative/dynamical coupling via planetary waves for a range of solar fluxes. In the former case, the model response in the winter stratosphere was linear and of the order of the summer stratopause forcing, whilst in the latter, the level of correlation in the winter stratosphere remained high, but was diluted over a wider volume. The inclusion of the upper atmosphere enhanced the winter polar stratospheric response by a factor of three.  相似文献   
159.
Until pristine samples can be returned from cometary nuclei, primitive meteorites represent our best source of information about organic chemistry in the early solar system. However, this material has been affected by secondary processing on asteroidal parent bodies which probably did not affect the material now present in cometary nuclei. Production of meteoritic organic matter apparently involved the following sequence of events: Molecule formation by a variety of reaction pathways in dense interstellar clouds; Condensation of those molecules onto refractory interstellar grains; Irradiation of organic-rich interstellar-grain mantles producing a range of molecular fragments and free radicals; Inclusion of those interstellar grains into the protosolar nebula with probable heating of at least some grain mantles during passage through the shock wave bounding the solar accretion disc; Agglomeration of residual interstellar grains and locally produced nebular condensates into asteroid-sized planetesimals; Heating of planetesimals by decay of extinct radionuclides; Melting of ice to produce liquid water within asteroidal bodies; Reaction of interstellar molecules, fragments and radicals with each other and with the aqueous environment, possibly catalysed by mineral grains; Loss of water and other volatiles to space yielding a partially hydrated lithology containing a complex suite of organic molecules; Heating of some of this organic matter to generate a kerogen-like complex; Mixing of heated and unheated material to yield the meteoritic material now observed. Properties of meteoritic organic matter believed to be consistent with this scenario include: Systematic decrease of abundance with increasing C number in homologous series of characterisable molecules; Complete structural diversity within homologous series; Predominance of branched-chain isomers; Considerable isotopic variability among characterisable molecules and within kerogen-like material; Substantial deuterium enrichment in all organic fractions; Some fractions significantly enriched in nitrogen-15; Modest excesses of L-enantiomers in some racemisation-resistant molecules but no general enantiomeric preference. Despite much speculation about the possible role of Fischer-Tropsch catalytic hydrogenation of CO in production of organic molecules in the solar nebula, no convincing evidence for such material has been found in meteorites. A similarity between some meteoritic organics and those produced by Miller-Urey discharge synthesis may reflect involvement of common intermediates rather than the operation of electric discharges in the early solar system. Meteoritic organic matter constitutes a useful, but not exact, guide to what we shall find with in situ analytical and sample-return missions to cometary nuclei. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
160.
The Cassini visual and infrared mapping spectrometer (VIMS) investigation is a multidisciplinary study of the Saturnian system. Visual and near-infrared imaging spectroscopy and high-speed spectrophotometry are the observational techniques. The scope of the investigation includes the rings, the surfaces of the icy satellites and Titan, and the atmospheres of Saturn and Titan. In this paper, we will elucidate the major scientific and measurement goals of the investigation, the major characteristics of the Cassini VIMS instrument, the instrument calibration, and operation, and the results of the recent Cassini flybys of Venus and the Earth–Moon system.This revised version was published online in July 2005 with a corrected cover date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号