首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   408篇
  免费   1篇
  国内免费   2篇
航空   162篇
航天技术   85篇
综合类   3篇
航天   161篇
  2021年   3篇
  2019年   5篇
  2018年   8篇
  2017年   8篇
  2016年   2篇
  2015年   3篇
  2014年   8篇
  2013年   16篇
  2012年   7篇
  2011年   39篇
  2010年   16篇
  2009年   31篇
  2008年   19篇
  2007年   19篇
  2006年   19篇
  2005年   11篇
  2004年   8篇
  2003年   17篇
  2002年   9篇
  2001年   5篇
  2000年   15篇
  1999年   9篇
  1998年   9篇
  1997年   6篇
  1996年   8篇
  1995年   4篇
  1994年   4篇
  1993年   2篇
  1991年   5篇
  1989年   6篇
  1988年   5篇
  1987年   4篇
  1986年   12篇
  1985年   16篇
  1984年   2篇
  1983年   3篇
  1982年   2篇
  1981年   4篇
  1980年   4篇
  1979年   3篇
  1978年   2篇
  1974年   2篇
  1973年   4篇
  1971年   1篇
  1970年   2篇
  1968年   7篇
  1967年   7篇
  1966年   3篇
  1965年   1篇
  1963年   1篇
排序方式: 共有411条查询结果,搜索用时 968 毫秒
221.
Unique springs, discharging from the surface of an arctic glacier, release H(2)S and deposit native sulfur, gypsum, and calcite. The presence of sulfur in three oxidation states indicates a complex series of redox reactions. Physical and chemical conditions of the spring water and surrounding environment, as well as mineralogical and isotopic signatures, suggest biologically mediated reactions. Cell counts and DNA analyses confirm bacteria are present in the spring system, and a limited number of sequenced isolates suggests that complex communities of bacteria live within the glacial system.  相似文献   
222.
Macromolecules derived from hydrogen cyanide (HCN) may be major components of the dark matter observed in bodies in the outer Solar System, which include comets and asteroids. HCN oligomers and polymers are readily formed at room temperature and react with water to produce polypeptides and alpha-amino acids or undergo pyrolysis to produce nitrogen heterocycles. Electron spin resonance (ESR) spectroscopy shows that HCN polymer mixtures contain a significant amount of long-lived organic free radicals that are primarily carbon-based. For comparison, we have also examined samples of tholins produced from experimental analogs of Titan aerosols, which has been shown by trace organic analysis to consist partly of HCN polymer. The "Titan tholin" exhibits at least two ESR signals that can be assigned to nitrogen- and carbon-centered radicals, although heating the sample eliminates the nitrogen centers and increases the signal from the carbon centers. This result suggests that the nitrogen-centered radicals may be thermodynamically less stable, but are kinetically trapped during the spark-discharge reactions that produce tholins from mixtures of gases such as methane and nitrogen. The results strongly support previous proposals of free radical mechanisms for HCN polymerization.  相似文献   
223.
Since 1972, nearly continuous observations of coronal holes and their associated photospheric magnetic fields have been made using a variety of satellite and ground-based equipment. The results of comparisons of these observations are reviewed and it is demonstrated that the structure and evolution of coronal holes is basically governed by the large-scale distribution of photospheric magnetic flux. Non-polar holes form in the decaying remnants of bipolar magnetic regions in areas with a large-scale flux imbalance. There is strong indirect evidence that the magnetic field in coronal holes is always open to interplanetary space but not all open-field regions have associated coronal holes. The well-observed declining phase of the last solar cycle was characterized by stable magnetic field and coronal hole patterns which were associated with recurrent, high-speed wind streams and interplanetary magnetic field patterns at the Earth. The ascending phase of the current cycle has been characterized by transient magnetic field and coronal hole patterns which tend to occur at high solar latitudes. This shift in magnetic field and coronal hole patterns has resulted in a less obvious and more complicated association with high-speed wind streams at the Earth.Proceedings of the Symposium on Solar Terrestrial Physics held in Innsbruck, May–June 1978.Operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.Visiting Scientist, Kitt Peak National Observatory.  相似文献   
224.
Space Science Reviews - Many theories of the solar flare process invoke storage of energy in the active region magnetic field above the solar photosphere. Observational evidence relating to such...  相似文献   
225.
226.
Stellar occultations provide a useful means of measuring the trace gas composition of the Earth's mesosphere with a sensitivity of order one part per billion. The operational details will differ from those of other astronomical observations by ST, because of the difficulties in guiding near the Earth's limb. Two specific trace gases of interest to atmospheric studies, Cl and ClO, are discussed in this paper.  相似文献   
227.
228.
While most studies on space power systems target electricity generation as the energy product, industrialized nations also have a need for chemicals to support transportation and other purposes. This paper therefore describes an alternative target for the application of space power systems: the production of chemical fuels based on radiant energy beamed or reflected from orbiting platforms. If cost and efficiency targets can be achieved, Solar Thermochemical Plants—occupying a few square kilometers each—can potentially generate substantial quantities of transportation fuels, therefore enabling reductions in the consumption of petroleum and the emission of carbon dioxide. The specifics of the approach that are described in this paper include the concentration of radiant energy within ground-based systems so that high temperature heat is provided for thermochemical process networks. This scoping study includes the evaluation of various feedstock chemicals as input to the Solar Thermochemical Plant: natural gas, biomass and zero-energy chemicals (water and carbon dioxide); and the production of either hydrogen or long-chain hydrocarbons (i.e., Fischer–Tropsch fuels) as the Solar Fuel product of the plant.  相似文献   
229.
The New Horizons instrument named Ralph is a visible/near infrared multi-spectral imager and a short wavelength infrared spectral imager. It is one of the core instruments on New Horizons, NASA’s first mission to the Pluto/Charon system and the Kuiper Belt. Ralph combines panchromatic and color imaging capabilities with SWIR imaging spectroscopy. Its primary purpose is to map the surface geology and composition of these objects, but it will also be used for atmospheric studies and to map the surface temperature. It is a compact, low-mass (10.5 kg) power efficient (7.1 W peak), and robust instrument with good sensitivity and excellent imaging characteristics. Other than a door opened once in flight, it has no moving parts. These characteristics and its high degree of redundancy make Ralph ideally suited to this long-duration flyby reconnaissance mission.  相似文献   
230.
The changing view of planets orbiting low mass stars, M stars, as potentially hospitable worlds for life and its remote detection was motivated by several factors, including the demonstration of viable atmospheres and oceans on tidally locked planets, normal incidence of dust disks, including debris disks, detection of planets with masses in the 5-20 M() range, and predictions of unusually strong spectral biosignatures. We present a critical discussion of M star properties that are relevant for the long- and short-term thermal, dynamical, geological, and environmental stability of conventional liquid water habitable zone (HZ) M star planets, and the advantages and disadvantages of M stars as targets in searches for terrestrial HZ planets using various detection techniques. Biological viability seems supported by unmatched very long-term stability conferred by tidal locking, small HZ size, an apparent short-fall of gas giant planet perturbers, immunity to large astrosphere compressions, and several other factors, assuming incidence and evolutionary rate of life benefit from lack of variability. Tectonic regulation of climate and dynamo generation of a protective magnetic field, especially for a planet in synchronous rotation, are important unresolved questions that must await improved geodynamic models, though they both probably impose constraints on the planet mass. M star HZ terrestrial planets must survive a number of early trials in order to enjoy their many Gyr of stability. Their formation may be jeopardized by an insufficient initial disk supply of solids, resulting in the formation of objects too small and/or dry for habitability. The small empirical gas giant fraction for M stars reduces the risk of formation suppression or orbit disruption from either migrating or nonmigrating giant planets, but effects of perturbations from lower mass planets in these systems are uncertain. During the first approximately 1 Gyr, atmospheric retention is at peril because of intense and frequent stellar flares and sporadic energetic particle events, and impact erosion, both enhanced, the former dramatically, for M star HZ semimajor axes. Loss of atmosphere by interactions with energetic particles is likely unless the planetary magnetic moment is sufficiently large. For the smallest stellar masses a period of high planetary surface temperature, while the parent star approaches the main sequence, must be endured. The formation and retention of a thick atmosphere and a strong magnetic field as buffers for a sufficiently massive planet emerge as prerequisites for an M star planet to enter a long period of stability with its habitability intact. However, the star will then be subjected to short-term fluctuations with consequences including frequent unpredictable variation in atmospheric chemistry and surficial radiation field. After a review of evidence concerning disks and planets associated with M stars, we evaluate M stars as targets for future HZ planet search programs. Strong advantages of M stars for most approaches to HZ detection are offset by their faintness, leading to severe constraints due to accessible sample size, stellar crowding (transits), or angular size of the HZ (direct imaging). Gravitational lensing is unlikely to detect HZ M star planets because the HZ size decreases with mass faster than the Einstein ring size to which the method is sensitive. M star Earth-twin planets are predicted to exhibit surprisingly strong bands of nitrous oxide, methyl chloride, and methane, and work on signatures for other climate categories is summarized. The rest of the paper is devoted to an examination of evidence and implications of the unusual radiation and particle environments for atmospheric chemistry and surface radiation doses, and is summarized in the Synopsis. We conclude that attempts at remote sensing of biosignatures and nonbiological markers from M star planets are important, not as tests of any quantitative theories or rational arguments, but instead because they offer an inspection of the residues from a Gyr-long biochemistry experiment in the presence of extreme environmental fluctuations. A detection or repeated nondetections could provide a unique opportunity to partially answer a fundamental and recurrent question about the relation between stability and complexity, one that is not addressed by remote detection from a planet orbiting a solar-like star, and can only be studied on Earth using restricted microbial systems in serial evolution experiments or in artificial life simulations. This proposal requires a planet that has retained its atmosphere and a water supply. The discussion given here suggests that observations of M star exoplanets can decide this latter question with only slight modifications to plans already in place for direct imaging terrestrial exoplanet missions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号