首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   396篇
  免费   1篇
  国内免费   2篇
航空   154篇
航天技术   82篇
综合类   3篇
航天   160篇
  2021年   3篇
  2019年   5篇
  2018年   4篇
  2017年   5篇
  2016年   2篇
  2015年   3篇
  2014年   8篇
  2013年   16篇
  2012年   7篇
  2011年   38篇
  2010年   15篇
  2009年   31篇
  2008年   19篇
  2007年   19篇
  2006年   19篇
  2005年   11篇
  2004年   7篇
  2003年   17篇
  2002年   9篇
  2001年   5篇
  2000年   15篇
  1999年   10篇
  1998年   9篇
  1997年   6篇
  1996年   8篇
  1995年   4篇
  1994年   4篇
  1993年   2篇
  1991年   4篇
  1989年   5篇
  1988年   5篇
  1987年   4篇
  1986年   12篇
  1985年   16篇
  1984年   2篇
  1983年   3篇
  1982年   2篇
  1981年   4篇
  1980年   4篇
  1979年   3篇
  1978年   2篇
  1974年   2篇
  1973年   4篇
  1971年   1篇
  1970年   2篇
  1968年   6篇
  1967年   7篇
  1966年   3篇
  1965年   1篇
  1963年   1篇
排序方式: 共有399条查询结果,搜索用时 0 毫秒
261.
262.
263.
264.
265.
The dynamics of shock propagation have been studied theoretically for a variety of two-dimensional lattices. The approach used is based on molecular dynamics and hinges on the exact numerical solution by computer of the equations of motion for the individual atoms or molecules in each lattice. Shocks have been launched into the lattices under study by methods designed to simulate flyer-plate impact. Two different interatomic potentials have been used, one endothermic and one net-exothermic. For both types of potential, a shock launched at one side of the lattice will spall a group of atoms off the other side. However, the subsequent behavior of the two types of lattice is very different. For endothermic potentials, after the initial atomic spall, the residual lattice is quiescent with little further activity. For net-exothermic potentials, the initial atomic spall injects additional energy into the system in such a manner that subsequently further spall occurs at both sides. Once this new spall is initiated, it leads rapidly to further bond breaking and explosive disintegration of the system.  相似文献   
266.
267.
A review of the physics and gasdynamics associated with conventional CO2-N2 gasdynamic lasers (GDL's) is given, including a short survey of the state of the art. The role of advanced, downstream mixing GDL's is examined, and the question is addressed: Can such downstream mixing GDL's provide an order-of-magnitude increase in power output over the conventional device? Finally, combustion driven GDL's with unconventional fuels are examined, and new results for gain and maximum available power are given for various fuel-oxidizer combinations.  相似文献   
268.
This article examines the long-term ‘Star Wars’ R&D programme initiated by President Reagan - the Strategic Defense Initiative (SDI). The nature of this initiative and the research programme that has been approved are described. There is still considerable uncertainty over where the SDI research will eventually lead - whether it be a limited BMD system designed to protect military targets or a comprehensive shield to protect the USA and its allies. The feasibility and potential implications of the SDI are examined with this caveat in mind.  相似文献   
269.
270.
Planning for the future exploration of the solar system has involved the structuring of a series of missions that address major scientific objectives at a minimum runout cost for the entire endeavor. In many cases, however, the optimal structuring of a program that would minimize the runout cost would entail an unacceptable high annual funding. Our actual planning must consider the planning wedge imposed on the National Aeronautics and Space Administration. It is vital that a plan be structured that copes with the annual restraint. If we do not recognize this, our plan will not be realized and a queing problem will result, thus negating all of our planning efforts.This paper presents ideas as to how planetary initiatives can be structured, wherein the peak annual funding is minimized. One vital aspect in the plan is to have a transportation capability that can launch a mission in any planetary opportunity. Solar electric propulsion can provide this capability. Another cost reduction approach would be to structure a mission set in a time sequenced fashion that could utilize essentially the same spacecraft for the implementation of several missions. This opportunity does exist. A third technique would be to fulfill a scientific objective in several sequential missions rather than attempt to accomplish all of the objectives with one mission. This approach might be applied to a mission currently in the planning stage designated the Saturn Orbiter Dual Probe mission. The current concept involves the delivery of a Saturn probe, a Titan probe, and a Saturn Orbiter by a one Shuttle launch. In this case, the orbiter must serve as a relay station for both probes; map the magnetosphere of Saturn; conduct a survey of Saturn's major satellites; and perform the planetological observation of Saturn itself. This mission entails the development of a complex spacecraft that would be required to have a fairly long life due to the extended mission operations at the benefit of accomplishing the mission with one launch. An alternate approach would be to break the mission into two separate elements. We could, for example, launch a Saturn orbiter carrying a Saturn entry probe. After serving as a communications relay system for the Saturn probe, the orbiter would then be specialized to map the magnetosphere of Saturn. A second launch would involve the delivery of a Titan probe by another orbiter where after delivery the orbiter would conduct the planetological observation of Saturn and its satellites. For the split-launch option, the runout cost for the two missions would be greater than the single launch option. However, optimum structuring of the two missions could materially reduce the peak annual funding.This paper presents data on the estimated cost on a year by year basis of a mission set structured to minimize the runout cost with no concern as to the peak annual funding as compared to a mission set that would yield the same scientific objectives in a slightly longer time span wherein the annual peak funding would be minimized. The consequences of this revised plan are analyzed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号