首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   331篇
  免费   1篇
  国内免费   10篇
航空   195篇
航天技术   90篇
综合类   1篇
航天   56篇
  2020年   2篇
  2019年   3篇
  2018年   4篇
  2017年   5篇
  2016年   3篇
  2015年   2篇
  2014年   17篇
  2013年   9篇
  2012年   15篇
  2011年   33篇
  2010年   9篇
  2009年   16篇
  2008年   23篇
  2007年   12篇
  2006年   9篇
  2005年   13篇
  2004年   15篇
  2003年   6篇
  2001年   10篇
  2000年   7篇
  1999年   11篇
  1998年   7篇
  1997年   2篇
  1996年   8篇
  1995年   6篇
  1994年   6篇
  1993年   7篇
  1992年   7篇
  1991年   5篇
  1990年   7篇
  1989年   3篇
  1988年   4篇
  1987年   2篇
  1986年   5篇
  1985年   6篇
  1984年   5篇
  1983年   6篇
  1982年   4篇
  1981年   3篇
  1979年   2篇
  1978年   3篇
  1976年   2篇
  1975年   4篇
  1974年   2篇
  1973年   2篇
  1969年   1篇
  1968年   1篇
  1967年   2篇
  1966年   1篇
  1965年   1篇
排序方式: 共有342条查询结果,搜索用时 437 毫秒
271.
焦树建  李进  刘静  陈利如 《航空动力学报》1993,8(4):353-357,418
本文概述了用实验方法验证的在无隙锥形旋流器燃烧室中发生的流场的分叉现象及其特性 ,并初步介绍了出现分叉现象的成因 ,从而揭示了这种燃烧室燃烧火焰脉动的根源。  相似文献   
272.
This chapter reviews how our knowledge of CMEs and CME-associated phenomena has been improved, since the launch of the SOHO mission, thanks to multi-wavelength analysis. The combination of data obtained from space-based experiments and ground based instruments allows us to follow the space-time development of an event from the bottom of the corona to large distances in the interplanetary medium. Since CMEs originate in the low solar corona, understanding the physical processes that generate them is strongly dependant on coordinated multi-wavelength observations. CMEs display a large diversity in morphology and kinematic properties, but there is presently no statistical evidence that those properties may serve to group them into different classes. When a CME takes place, the coronal magnetic field undergoes restructuring. Much of the current research is focused on understanding how the corona sustains the stresses that allow the magnetic energy to build up and how, later on, this magnetic energy is released during eruptive flares and CMEs. Multi-wavelength observations have confirmed that reconnection plays a key role during the development of CMEs. Frequently, CMEs display a rather simple shape, exhibiting a well known three-part structure (bright leading edge, dark cavity and bright knot). These types of events have led to the proposal of the ‘`standard model’' of the development of a CME, a model which predicts the formation of current sheets. A few recent coronal observations provide some evidence for such sheets. Other more complex events correspond to multiple eruptions taking place on a time scale much shorter than the cadence of coronagraph instruments. They are often associated with large-scale dimming and coronal waves. The exact nature of these waves and the physical link between these different manifestations are not yet elucidated. We also discuss what kind of shocks are produced during a flare or a CME. Several questions remain unanswered. What is the nature of the shocks in the corona (blast-wave or piston-driven?) How they are related to Moreton waves seen in Hα? How they are related to interplanetary shocks? The last section discusses the origin of energetic electrons detected in the corona and in the interplanetary medium. “Complex type III-like events,”which are detected at hectometric wavelengths, high in the corona, and are associated with CMEs, appear to originate from electrons that have been accelerated lower in the corona and not at the bow shock of CMEs. Similarly, impulsive energetic electrons observed in the interplanetary medium are not the exclusive result of electron acceleration at the bow shocks of CMEs; rather they have a coronal origin.  相似文献   
273.
基于Modelica和Dymola的航空发动机建模与性能仿真   总被引:4,自引:0,他引:4  
本文介绍了Modelica/Dymola软件的主要特点,航空发动机模块划分的原则和方法,以及利用Modelica/Dymola软件开发的航空发动机通用模型库中主要部件的建模方法,并采用己建立的部件模型,搭建了双轴涡扇发动机的系统级模型,对其起动过程进行了仿真.结果表明,仿真结果符合实际情况,该模型库对于航空发动机的概念设计和初步设计具有重要意义和实用价值.  相似文献   
274.
This study proposes a process to obtain an optimal helicopter rotor blade shape for aerodynamic performance in hover flight. A new geometry representation algorithm which uses the class function/shape function transformation (CST) is employed to generate airfoil coordinates. With this approach, airfoil shape is considered in terms of design variables. The optimization process is constructed by integrating several programs developed by author. The design variables include twist, taper ratio, point of taper initiation, blade root chord, and coefficients of the airfoil distribution function. Aerodynamic constraints consist of limits on power available in hover and forward flight. The trim condition must be attainable. This paper considers rotor blade configuration for the hover flight condition only, so that the required power in hover is chosen as the objective function of the optimization problem. Sensitivity analysis of each design variable shows that airfoil shape has an important role in rotor performance. The optimum rotor blade reduces the required hover power by 7.4% and increases the figure of merit by 6.5%, which is a good improvement for rotor blade design.  相似文献   
275.
Innovative processing of satellite radar altimetry over solid Earth has been successfully applied for observing geodynamic process of glacial isostatic adjustment over the former Laurentide Ice Sheet in the present-day Hudson Bay land region. In this contribution, a simulation is conducted to study the prospects of the applications of space-/airborne and land-based Global Navigation Satellite System (GNSS) reflectometry to synoptically observe global-scale geodynamic processes with a vertical accuracy of ∼2 mm/yr.  相似文献   
276.
The balloon-borne cosmic-ray experiment CREAM-I (Cosmic-Ray Energetics And Mass) recently completed a successful 42-day flight during the 2004–2005 NASA/NSF/NSBF Antarctic expedition. CREAM-I combines an imaging calorimeter with charge detectors and a precision transition radiation detector (TRD). The TRD component of CREAM-I is targeted at measuring the energy of cosmic-ray particles with charges greater than Z ∼ 3. A central science goal of this effort is the determination of the ratio of secondary to primary nuclei at high energy. This measurement is crucial for the reconstruction of the propagation history of cosmic rays, and consequently for the determination of their source spectra. First scientific results from this instrument are presented.  相似文献   
277.
The Balloon-borne Experiment with a Superconducting Spectrometer (BESS) has been carried out to search for primordial antiparticles in cosmic rays. In ten flights from 1993 to 2004, it measured the cosmic-ray antiproton spectrum in the energy range 0.1–4.2 GeV at various solar activity conditions. It also searched for antideuterons and antihelium nuclei, and it made precise measurement of cosmic-ray particle spectra. The BESS program has been extended to long duration balloon (LDB) flights in Antarctica (BESS-Polar) with the goal of achieving unprecedented sensitivity in the search for primordial antiparticles. This report describes recent results from BESS and progress of the BESS-Polar program.  相似文献   
278.
In this paper, we report searches for antihelium in cosmic rays using two recently flown magnetic rigidity spectrometers. BESS-TeV had extended rigidity with an MDR of 1.4 TV and had a flight duration of one day. BESS-Polar was optimized for collecting power. It was flown for 8.5 days and had an MDR of 240 GV. The former flight allows us to explore a previously unexplored rigidity band and the latter flight yields a factor of three improvement in the overall BESS limit. No antihelium candidate was found in the rigidity ranges of 1–500 GV, and 0.6–20 GV, among 7 × 104 events taken with BESS-TeV, and 8 × 106 events taken with BESS-Polar, respectively.  相似文献   
279.
Selection of the Mars Science Laboratory Landing Site   总被引:1,自引:0,他引:1  
The selection of Gale crater as the Mars Science Laboratory landing site took over five years, involved broad participation of the science community via five open workshops, and narrowed an initial >50 sites (25 by 20?km) to four finalists (Eberswalde, Gale, Holden and Mawrth) based on science and safety. Engineering constraints important to the selection included: (1)?latitude (±30°) for thermal management of the rover and instruments, (2)?elevation (<?1?km) for sufficient atmosphere to slow the spacecraft, (3)?relief of <100–130?m at baselines of 1–1000?m for control authority and sufficient fuel during powered descent, (4)?slopes of <30° at baselines of 2–5?m for rover stability at touchdown, (5)?moderate rock abundance to avoid impacting the belly pan during touchdown, and (6)?a?radar-reflective, load-bearing, and trafficable surface that is safe for landing and roving and not dominated by fine-grained dust. Science criteria important for the selection include the ability to assess past habitable environments, which include diversity, context, and biosignature (including organics) preservation. Sites were evaluated in detail using targeted data from instruments on all active orbiters, and especially Mars Reconnaissance Orbiter. All of the final four sites have layered sedimentary rocks with spectral evidence for phyllosilicates that clearly address the science objectives of the mission. Sophisticated entry, descent and landing simulations that include detailed information on all of the engineering constraints indicate all of the final four sites are safe for landing. Evaluation of the traversabilty of the landing sites and target “go to” areas outside of the ellipse using slope and material properties information indicates that all are trafficable and “go to” sites can be accessed within the lifetime of the mission. In the final selection, Gale crater was favored over Eberswalde based on its greater diversity and potential habitability.  相似文献   
280.
The Balloon-borne Experiment with a Superconducting Spectrometer (BESS) was flown from Lynn Lake, Manitoba, Canada in August, 2000, during the maximum solar modulation period, with an average residual atmospheric overburden of 4.3 g/cm2. Precise spectral measurements of cosmic ray hydrogen isotopes from 0.178 GeV/n to 1.334 GeV/n were made during the 28.7 h of flight. This paper presents the measured energy spectra and their ratio, 2H/1H. The results are also compared with previous measurements and theoretical predictions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号