全文获取类型
收费全文 | 241篇 |
免费 | 1篇 |
国内免费 | 2篇 |
专业分类
航空 | 104篇 |
航天技术 | 51篇 |
综合类 | 2篇 |
航天 | 87篇 |
出版年
2021年 | 6篇 |
2020年 | 4篇 |
2019年 | 4篇 |
2018年 | 5篇 |
2017年 | 6篇 |
2016年 | 2篇 |
2015年 | 3篇 |
2014年 | 6篇 |
2013年 | 11篇 |
2012年 | 10篇 |
2011年 | 13篇 |
2010年 | 9篇 |
2009年 | 19篇 |
2008年 | 9篇 |
2007年 | 15篇 |
2006年 | 7篇 |
2005年 | 10篇 |
2004年 | 7篇 |
2003年 | 8篇 |
2002年 | 6篇 |
2001年 | 5篇 |
2000年 | 4篇 |
1999年 | 1篇 |
1998年 | 6篇 |
1997年 | 1篇 |
1996年 | 5篇 |
1995年 | 3篇 |
1993年 | 2篇 |
1992年 | 4篇 |
1991年 | 1篇 |
1987年 | 3篇 |
1986年 | 2篇 |
1985年 | 5篇 |
1984年 | 2篇 |
1983年 | 3篇 |
1982年 | 3篇 |
1981年 | 4篇 |
1980年 | 2篇 |
1979年 | 1篇 |
1977年 | 1篇 |
1975年 | 1篇 |
1974年 | 2篇 |
1973年 | 1篇 |
1972年 | 1篇 |
1970年 | 1篇 |
1969年 | 2篇 |
1968年 | 5篇 |
1967年 | 8篇 |
1966年 | 5篇 |
排序方式: 共有244条查询结果,搜索用时 0 毫秒
71.
给出了国外对于载人深空探测的另外一个角度的看法,指出必须充分认识到载人火星探测的风险和成本,应优先考虑发展空间能力,解决社会民生问题。 相似文献
72.
Mark F. Storz Bruce R. Bowman Major James I. Branson Stephen J. Casali W. Kent Tobiska 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2005,36(12):2497-2505
The dominant error source in force models used to predict low-perigee satellite trajectories is atmospheric drag. Errors in operational thermospheric density models cause significant errors in predicted satellite positions, since these models do not account for dynamic changes in atmospheric drag for orbit predictions. The Air Force Space Battlelab’s High Accuracy Satellite Drag Model (HASDM) estimates and predicts (out three days) a dynamically varying global density field. HASDM includes the Dynamic Calibration Atmosphere (DCA) algorithm that solves for the phases and amplitudes of the diurnal and semidiurnal variations of thermospheric density near real-time from the observed drag effects on a set of Low Earth Orbit (LEO) calibration satellites. The density correction is expressed as a function of latitude, local solar time and altitude. In HASDM, a time series prediction filter relates the extreme ultraviolet (EUV) energy index E10.7 and the geomagnetic storm index ap, to the DCA density correction parameters. The E10.7 index is generated by the SOLAR2000 model, the first full spectrum model of solar irradiance. The estimated and predicted density fields will be used operationally to significantly improve the accuracy of predicted trajectories for all low-perigee satellites. 相似文献
73.
The azimuth and elevation angles of an airborne beacon transmitter can be determined using a direction finder comprised of two orthogonal interferometers located near the earth's surface. In this paper we consider the reflection of the incident electromagnetic field by the earth's surface and the resultant effect on the direction-finding system. The analysis yields an upper bound or limit to the interferometer phase error and the corresponding error in bearing angle that can result because of specular reflection and diffuse scattering. 相似文献
74.
La Duc MT Benardini JN Kempf MJ Newcombe DA Lubarsky M Venkateswaran K 《Astrobiology》2007,7(2):416-431
The microbial diversity of Kali chimney plumes, part of a hydrothermal vent field in the Rodriguez Triple Junction, Indian Ocean (depth approximately 2,240 m), was examined in an attempt to discover "extremotolerant" microorganisms that have evolved unique resistance capabilities to this harsh environment. Water and sediment samples were collected from the vent and from sediments located at various distances (2-20 m) away from and surrounding the chimney. Samples were screened for hypertolerant microbes that are able to withstand multiple stresses. A total of 46 isolates were selected for exposure to a number of perturbations, such as heat shock, desiccation, H(2)O(2), and ultraviolet (UV) and gamma-irradiation. The survival of Psychrobacter sp. L0S3S-03b following exposure to >1,000 J/m(2) UV(254) radiation was particularly intriguing amid a background of varying levels of resistance. Vegetative cells of this non-spore-forming microbe not only survived all of the treatments, but also exhibited a 90% lethal dose of 30 s when exposed to simulated martian UV radiation and a 100% lethal dose of 2 min when exposed to full spectrum UV, which is comparable to findings for bacterial endospores. 相似文献
75.
D. P. Sharma R. K. Sood G. Stringfellow S. D. James K. M. Hill R. K. Manchanda 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1993,13(12):375-378
The galactic X-ray source GX 1+4 has been undergoing remarkable changes since early 1991. The X-ray pulsar has shown fast spin down accompanied by an increase in the hard X-ray intensity. We have obtained 1.6Å resolution spectra of the optical counterpart extending the known spectrum to 8500Å. The Ca II (8498Å) line seen for the first time from this source is indicative of a nova burst scenario. Other lines detected for the first time are detailed and the significance of these features is discussed. 相似文献
76.
MacLeish MY Moreno NP Thomson WA Newman DJ Gannon PJ Smith RB Denton JJ James RK Wilson C Sognier M Illman DL 《Acta Astronautica》2005,56(9-12):773-782
The National Space Biomedical Research Institute (NSBRI) is supporting the National Aeronautics and Space Administration's (NASA) education mission through a comprehensive Education and Public Outreach Program (EPOP) that communicates the excitement and significance of space biology to schools, families, and lay audiences. The EPOP is comprised of eight academic institutions: Baylor College of Medicine, Massachusetts Institute of Technology, Morehouse School of Medicine, Mount Sinai School of Medicine, Texas A&M University, University of Texas Medical Branch Galveston, Rice University, and the University of Washington. This paper describes the programs and products created by the EPOP to promote space life science education in schools and among the general public. To date, these activities have reached thousands of teachers and students around the US and have been rated very highly. 相似文献
77.
Maurer RH Roth DR Kinnison JD Goldsten JO Gold RE Fainchtein R 《Acta Astronautica》2003,52(2-6):405-410
We describe the instrument design and detector development for MANES which has been selected to fly on the Mars 2003 Lander. Section 1 explains the need for the spectrometer in determining the increased risk of carcinogenesis for astronauts. Section 2 presents the instrument design including an outline drawing, a cross-sectional view and a detailed block diagram. Sections 3 and 4 describe the low and high energy detector components of the spectrometer and present responses to monoenergetic neutron beams. Sections 5 and 6 explain the design approaches to charged particle discrimination and instrument transfer function modeling. 相似文献
78.
G. Randall Gladstone Steven C. Persyn John S. Eterno Brandon C. Walther David C. Slater Michael W. Davis Maarten H. Versteeg Kristian B. Persson Michael K. Young Gregory J. Dirks Anthony O. Sawka Jessica Tumlinson Henry Sykes John Beshears Cherie L. Rhoad James P. Cravens Gregory S. Winters Robert A. Klar Walter Lockhart Benjamin M. Piepgrass Thomas K. Greathouse Bradley J. Trantham Philip M. Wilcox Matthew W. Jackson Oswald H. W. Siegmund John V. Vallerga Rick Raffanti Adrian Martin J.-C. Gérard Denis C. Grodent Bertrand Bonfond Benoit Marquet François Denis 《Space Science Reviews》2017,213(1-4):447-473
The ultraviolet spectrograph instrument on the Juno mission (Juno-UVS) is a long-slit imaging spectrograph designed to observe and characterize Jupiter’s far-ultraviolet (FUV) auroral emissions. These observations will be coordinated and correlated with those from Juno’s other remote sensing instruments and used to place in situ measurements made by Juno’s particles and fields instruments into a global context, relating the local data with events occurring in more distant regions of Jupiter’s magnetosphere. Juno-UVS is based on a series of imaging FUV spectrographs currently in flight—the two Alice instruments on the Rosetta and New Horizons missions, and the Lyman Alpha Mapping Project on the Lunar Reconnaissance Orbiter mission. However, Juno-UVS has several important modifications, including (1) a scan mirror (for targeting specific auroral features), (2) extensive shielding (for mitigation of electronics and data quality degradation by energetic particles), and (3) a cross delay line microchannel plate detector (for both faster photon counting and improved spatial resolution). This paper describes the science objectives, design, and initial performance of the Juno-UVS. 相似文献
79.
Curiosity’s Mars Hand Lens Imager (MAHLI) Investigation 总被引:1,自引:0,他引:1
Kenneth S. Edgett R. Aileen Yingst Michael A. Ravine Michael A. Caplinger Justin N. Maki F. Tony Ghaemi Jacob A. Schaffner James F. Bell III Laurence J. Edwards Kenneth E. Herkenhoff Ezat Heydari Linda C. Kah Mark T. Lemmon Michelle E. Minitti Timothy S. Olson Timothy J. Parker Scott K. Rowland Juergen Schieber Robert J. Sullivan Dawn Y. Sumner Peter C. Thomas Elsa H. Jensen John J. Simmonds Aaron J. Sengstacken Reg G. Willson Walter Goetz 《Space Science Reviews》2012,170(1-4):259-317
The Mars Science Laboratory (MSL) Mars Hand Lens Imager (MAHLI) investigation will use a 2-megapixel color camera with a focusable macro lens aboard the rover, Curiosity, to investigate the stratigraphy and grain-scale texture, structure, mineralogy, and morphology of geologic materials in northwestern Gale crater. Of particular interest is the stratigraphic record of a ~5?km thick layered rock sequence exposed on the slopes of Aeolis Mons (also known as Mount Sharp). The instrument consists of three parts, a?camera head mounted on the turret at the end of a robotic arm, an electronics and data storage assembly located inside the rover body, and a calibration target mounted on the robotic arm shoulder azimuth actuator housing. MAHLI can acquire in-focus images at working distances from ~2.1?cm to infinity. At the minimum working distance, image pixel scale is ~14?μm per pixel and very coarse silt grains can be resolved. At the working distance of the Mars Exploration Rover Microscopic Imager cameras aboard Spirit and Opportunity, MAHLI’s resolution is comparable at ~30?μm per pixel. Onboard capabilities include autofocus, auto-exposure, sub-framing, video imaging, Bayer pattern color interpolation, lossy and lossless compression, focus merging of up to 8 focus stack images, white light and longwave ultraviolet (365 nm) illumination of nearby subjects, and 8 gigabytes of non-volatile memory data storage. 相似文献
80.
The Geology of Mercury: The View Prior to the MESSENGER Mission 总被引:1,自引:0,他引:1
James W. Head Clark R. Chapman Deborah L. Domingue S. Edward Hawkins III William E. McClintock Scott L. Murchie Louise M. Prockter Mark S. Robinson Robert G. Strom Thomas R. Watters 《Space Science Reviews》2007,131(1-4):41-84
Mariner 10 and Earth-based observations have revealed Mercury, the innermost of the terrestrial planetary bodies, to be an
exciting laboratory for the study of Solar System geological processes. Mercury is characterized by a lunar-like surface,
a global magnetic field, and an interior dominated by an iron core having a radius at least three-quarters of the radius of
the planet. The 45% of the surface imaged by Mariner 10 reveals some distinctive differences from the Moon, however, with
major contractional fault scarps and huge expanses of moderate-albedo Cayley-like smooth plains of uncertain origin. Our current
image coverage of Mercury is comparable to that of telescopic photographs of the Earth’s Moon prior to the launch of Sputnik
in 1957. We have no photographic images of one-half of the surface, the resolution of the images we do have is generally poor
(∼1 km), and as with many lunar telescopic photographs, much of the available surface of Mercury is distorted by foreshortening
due to viewing geometry, or poorly suited for geological analysis and impact-crater counting for age determinations because
of high-Sun illumination conditions. Currently available topographic information is also very limited. Nonetheless, Mercury
is a geological laboratory that represents (1) a planet where the presence of a huge iron core may be due to impact stripping
of the crust and upper mantle, or alternatively, where formation of a huge core may have resulted in a residual mantle and
crust of potentially unusual composition and structure; (2) a planet with an internal chemical and mechanical structure that
provides new insights into planetary thermal history and the relative roles of conduction and convection in planetary heat
loss; (3) a one-tectonic-plate planet where constraints on major interior processes can be deduced from the geology of the
global tectonic system; (4) a planet where volcanic resurfacing may not have played a significant role in planetary history
and internally generated volcanic resurfacing may have ceased at ∼3.8 Ga; (5) a planet where impact craters can be used to
disentangle the fundamental roles of gravity and mean impactor velocity in determining impact crater morphology and morphometry;
(6) an environment where global impact crater counts can test fundamental concepts of the distribution of impactor populations
in space and time; (7) an extreme environment in which highly radar-reflective polar deposits, much more extensive than those
on the Moon, can be better understood; (8) an extreme environment in which the basic processes of space weathering can be
further deduced; and (9) a potential end-member in terrestrial planetary body geological evolution in which the relationships
of internal and surface evolution can be clearly assessed from both a tectonic and volcanic point of view. In the half-century
since the launch of Sputnik, more than 30 spacecraft have been sent to the Moon, yet only now is a second spacecraft en route
to Mercury. The MESSENGER mission will address key questions about the geologic evolution of Mercury; the depth and breadth
of the MESSENGER data will permit the confident reconstruction of the geological history and thermal evolution of Mercury
using new imaging, topography, chemistry, mineralogy, gravity, magnetic, and environmental data. 相似文献