全文获取类型
收费全文 | 151篇 |
免费 | 0篇 |
国内免费 | 1篇 |
专业分类
航空 | 105篇 |
航天技术 | 32篇 |
航天 | 15篇 |
出版年
2021年 | 1篇 |
2015年 | 1篇 |
2014年 | 2篇 |
2013年 | 3篇 |
2012年 | 2篇 |
2011年 | 5篇 |
2010年 | 4篇 |
2009年 | 10篇 |
2008年 | 8篇 |
2007年 | 4篇 |
2006年 | 2篇 |
2004年 | 4篇 |
2003年 | 2篇 |
2002年 | 4篇 |
2001年 | 4篇 |
2000年 | 2篇 |
1999年 | 1篇 |
1998年 | 6篇 |
1997年 | 7篇 |
1996年 | 5篇 |
1995年 | 10篇 |
1994年 | 4篇 |
1993年 | 2篇 |
1992年 | 6篇 |
1991年 | 10篇 |
1990年 | 7篇 |
1989年 | 3篇 |
1988年 | 7篇 |
1987年 | 2篇 |
1986年 | 1篇 |
1985年 | 6篇 |
1984年 | 1篇 |
1983年 | 1篇 |
1982年 | 2篇 |
1980年 | 1篇 |
1979年 | 2篇 |
1978年 | 1篇 |
1976年 | 1篇 |
1975年 | 1篇 |
1973年 | 1篇 |
1972年 | 3篇 |
1966年 | 1篇 |
1963年 | 2篇 |
排序方式: 共有152条查询结果,搜索用时 15 毫秒
71.
Electric propulsion has emerged as a cost-effective solution to a wide range of satellite applications. Deep Space 1 successfully demonstrated electric propulsion as the primary propulsion source for a satellite. The POWOW concept is a solar-electric propelled spacecraft capable of significant cargo and short trip times for traveling to Mars. It would enter aerosynchronous orbit and from there, beam power to surface installations via lasers. The concept has been developed with industrial partner expertise in high efficiency solar cells, advanced concentrator modules, innovative arrays, and high power electric propulsion systems. The latest version of the spacecraft, the technologies used, and trip times to Mars are presented. The POWOW spacecraft is a general purpose solar electric propulsion system that uses new technologies that are directly applicable to commercial and government spacecraft with power levels ranging from a LEO power level of 4 kW up to GEO spacecraft about 1 MW. The system is modular, expandable, and amenable to learning curve cost projection methods 相似文献
72.
T. E. Moore C. R. Chappell M. O. Chandler S. A. Fields C. J. Pollock D. L. Reasoner D. T. Young J. L. Burch N. Eaker J. H. Waite Jr. D. J. McComas J. E. Nordholdt M. F. Thomsen J. J. Berthelier R. Robson 《Space Science Reviews》1995,71(1-4):409-458
The Thermal Ion Dynamics Experiment (TIDE) and the Plasma Source Instrument (PSI) have been developed in response to the requirements of the ISTP Program for three-dimensional (3D) plasma composition measurements capable of tracking the circulation of low-energy (0–500 eV) plasma through the polar magnetosphere. This plasma is composed of penetrating magnetosheath and escaping ionospheric components. It is in part lost to the downstream solar wind and in part recirculated within the magnetosphere, participating in the formation of the diamagnetic hot plasma sheet and ring current plasma populations. Significant obstacles which have previously made this task impossible include the low density and energy of the outflowing ionospheric plasma plume and the positive spacecraft floating potentials which exclude the lowest-energy plasma from detection on ordinary spacecraft. Based on a unique combination of focusing electrostatic ion optics and time of flight detection and mass analysis, TIDE provides the sensitivity (seven apertures of 1 cm2 effective area each) and angular resolution (6°×18°) required for this purpose. PSI produces a low energy plasma locally at the POLAR spacecraft that provides the ion current required to balance the photoelectron current, along with a low temperature electron population, regulating the spacecraft potential slightly positive relative to the space plasma. TIDE/PSI will: (a) measure the density and flow fields of the solar and terrestrial plasmas within the high polar cap and magnetospheric lobes; (b) quantify the extent to which ionospheric and solar ions are recirculated within the distant magnetotail neutral sheet or lost to the distant tail and solar wind; (c) investigate the mass-dependent degree energization of these plasmas by measuring their thermodynamic properties; (d) investigate the relative roles of ionosphere and solar wind as sources of plasma to the plasma sheet and ring current.Deceased. 相似文献
73.
The Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI) on the New Horizons Mission
Ralph L. McNutt Jr. Stefano A. Livi Reid S. Gurnee Matthew E. Hill Kim A. Cooper G. Bruce Andrews Edwin P. Keath Stamatios M. Krimigis Donald G. Mitchell Barry Tossman Fran Bagenal John D. Boldt Walter Bradley William S. Devereux George C. Ho Stephen E. Jaskulek Thomas W. LeFevere Horace Malcom Geoffrey A. Marcus John R. Hayes G. Ty Moore Mark E. Perry Bruce D. Williams Paul Wilson IV Lawrence E. Brown Martha B. Kusterer Jon D. Vandegriff 《Space Science Reviews》2008,140(1-4):315-385
The Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI) comprises the hardware and accompanying science investigation on the New Horizons spacecraft to measure pick-up ions from Pluto’s outgassing atmosphere. To the extent that Pluto retains its characteristics similar to those of a “heavy comet” as detected in stellar occultations since the early 1980s, these measurements will characterize the neutral atmosphere of Pluto while providing a consistency check on the atmospheric escape rate at the encounter epoch with that deduced from the atmospheric structure at lower altitudes by the ALICE, REX, and SWAP experiments on New Horizons. In addition, PEPSSI will characterize any extended ionosphere and solar wind interaction while also characterizing the energetic particle environment of Pluto, Charon, and their associated system. First proposed for development for the Pluto Express mission in September 1993, what became the PEPSSI instrument went through a number of development stages to meet the requirements of such an instrument for a mission to Pluto while minimizing the required spacecraft resources. The PEPSSI instrument provides for measurements of ions (with compositional information) and electrons from 10 s of keV to ~1 MeV in a 160°×12° fan-shaped beam in six sectors for 1.5 kg and ~2.5 W. 相似文献
74.
The degradation of conventional clutter processing filters due to missing pulses resulting from RF interference blanking, ambiguous range returns when no filter pulses are used, or eclipsing is described. The effects of a missing pulse on uncompensated and optimum clutter filters are investigated. The maximum improvement factor method and other methods are compared to the optimum filtering. New methods and results using a minimax log energy search method are described and are shown to provide performance and/or implementation complexity advantages 相似文献
75.
Yuen S.M. Gerlach K. Kretschmer F.F. Jr. 《IEEE transactions on aerospace and electronic systems》1991,27(6):897-901
The commenter summarizes Q-R decomposition techniques for solving the least squares (LS) problem and comments on associated aspects of the work presented by K. Gerlach and F.F. Kretschmer, Jr. (ibid., vol.267, no.1, Jan.90). In response to the commenter's statement that the statistical properties of the LS that determine the convergence performance are well known. Gerlach and Kretschmer assert that this is true only under the assumptions that have been used in the past to analyze the convergence performance of the canceler and for only a limited number of convergence performance measures. Gerlach and Kretschmer also address the commenter's points on overmatching degrees of freedom.<> 相似文献
76.
77.
Committee on Space Policy H.Guyford Stever Laurence J. Adams Consultant Retired President William A. Anders Senior Executive Vice President Arden L. Bement Jr Vice President Joseph V. Charyk Chairman of the Board Retired Chairman CEO Richard N. Cooper Robert S. Cooper President Edward E. David Jr President John M. Logsdon Director Jeremiah P. Ostriker Director Samuel C. Phillips Retired General Elmer B. Staats Edward C. Stone Jr Vice President 《Space Policy》1989,5(3)
78.
Clarence A. Wingate Jr. Thomas B. Coughlin Ralph M. Sullivan 《Acta Astronautica》1980,7(12):1389-1401
An optical bench has been designed and built that must hold the alignment of five optical elements to deflections of 1–2 arc s during orbital operation. In addition, it must suffer no alignment changes during the launch and prestabilization phase of the mission. Severe weight constraints, in conjunction with the thermal and structural requirements, led to the choice of graphite fiber reinforced epoxy egg crate core and face sheets for the bench construction. Active temperature control was necessary to meet thermal deflection objectives, and novel kinematic mountings were required to prevent spacecraft bending from deflecting the bench. The structural and thermal analyses both show that the mission objectives can be met with margin by the present design. No adverse effects from launch are expected, and the maximum thermal bending is expected to be less than 2 arc s. 相似文献
79.
A sampling-based approach to wideband interference cancellation 总被引:1,自引:0,他引:1
Haimovich A.M. Berin M.O. Teti J.G. Jr. 《IEEE transactions on aerospace and electronic systems》1998,34(1):2-12
Classical adaptive array schemes which use only complex spatial weights are inherently narrowband and consequently perform poorly when attempting to suppress wideband interference. The common solution to this problem is the use of tapped delay line filters in each spatial channel to facilitate space-time adaptive processing (STAP). The higher performance provided by the STAP architecture comes at the cost of a considerable increase in complexity. This paper presents a simpler technique based on programmable time adjustable sampling (TAS) that provides a limited number of wideband degrees of freedom. Two TAS methods are introduced: TAS-sidelobe canceler (TAS-SLC) is based on the sidelobe canceler, while TAS-minimum variance beamformer (TAS-MVB) is derived from the minimum variance beamformer. TAS is implemented by adjusting the sampling instant at selected array channels. TAS-SLC consists of controlling the sampling in the main channel of the sidelobe canceler With TAS-MVB array complex weights are substituted with TAS time delays. The performance of TAS methods with wideband interference is compared to the conventional sidelobe canceler and minimum variance beamformers. It is shown that TAS-SLC provides better performance than the sidelobe canceler, while TAS-MVB outperforms the minimum variance beamformer 相似文献
80.