首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   151篇
  免费   0篇
  国内免费   1篇
航空   105篇
航天技术   32篇
航天   15篇
  2021年   1篇
  2015年   1篇
  2014年   2篇
  2013年   3篇
  2012年   2篇
  2011年   5篇
  2010年   4篇
  2009年   10篇
  2008年   8篇
  2007年   4篇
  2006年   2篇
  2004年   4篇
  2003年   2篇
  2002年   4篇
  2001年   4篇
  2000年   2篇
  1999年   1篇
  1998年   6篇
  1997年   7篇
  1996年   5篇
  1995年   10篇
  1994年   4篇
  1993年   2篇
  1992年   6篇
  1991年   10篇
  1990年   7篇
  1989年   3篇
  1988年   7篇
  1987年   2篇
  1986年   1篇
  1985年   6篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
  1973年   1篇
  1972年   3篇
  1966年   1篇
  1963年   2篇
排序方式: 共有152条查询结果,搜索用时 15 毫秒
41.
The Cassini Ion and Neutral Mass Spectrometer (INMS) investigation will determine the mass composition and number densities of neutral species and low-energy ions in key regions of the Saturn system. The primary focus of the INMS investigation is on the composition and structure of Titan’s upper atmosphere and its interaction with Saturn’s magnetospheric plasma. Of particular interest is the high-altitude region, between 900 and 1000 km, where the methane and nitrogen photochemistry is initiated that leads to the creation of complex hydrocarbons and nitriles that may eventually precipitate onto the moon’s surface to form hydrocarbon–nitrile lakes or oceans. The investigation is also focused on the neutral and plasma environments of Saturn’s ring system and icy moons and on the identification of positive ions and neutral species in Saturn’s inner magnetosphere. Measurement of material sputtered from the satellites and the rings by magnetospheric charged particle and micrometeorite bombardment is expected to provide information about the formation of the giant neutral cloud of water molecules and water products that surrounds Saturn out to a distance of ∼12 planetary radii and about the genesis and evolution of the rings.The INMS instrument consists of a closed ion source and an open ion source, various focusing lenses, an electrostatic quadrupole switching lens, a radio frequency quadrupole mass analyzer, two secondary electron multiplier detectors, and the associated supporting electronics and power supply systems. The INMS will be operated in three different modes: a closed source neutral mode, for the measurement of non-reactive neutrals such as N2 and CH4; an open source neutral mode, for reactive neutrals such as atomic nitrogen; and an open source ion mode, for positive ions with energies less than 100 eV. Instrument sensitivity is greatest in the first mode, because the ram pressure of the inflowing gas can be used to enhance the density of the sampled non-reactive neutrals in the closed source antechamber. In this mode, neutral species with concentrations on the order of ≥104 cm−3 will be detected (compared with ≥105 cm−3 in the open source neutral mode). For ions the detection threshold is on the order of 10−2 cm−3 at Titan relative velocity (6 km sec−1). The INMS instrument has a mass range of 1–99 Daltons and a mass resolutionMM of 100 at 10% of the mass peak height, which will allow detection of heavier hydrocarbon species and of possible cyclic hydrocarbons such as C6H6.The INMS instrument was built by a team of engineers and scientists working at NASA’s Goddard Space Flight Center (Planetary Atmospheres Laboratory) and the University of Michigan (Space Physics Research Laboratory). INMS development and fabrication were directed by Dr. Hasso B. Niemann (Goddard Space Flight Center). The instrument is operated by a Science Team, which is also responsible for data analysis and distribution. The INMS Science Team is led by Dr. J. Hunter Waite, Jr. (University of Michigan).This revised version was published online in July 2005 with a corrected cover date.  相似文献   
42.
43.
This paper is concerned with the concept, evolution and performance analysis of a high-accuracy, near-earth and cislunar cooperative target tracking system, known as the Goddard Range and Range Rate System.This system combines the advantages of harmonic (or sidetone) and pseudo-random coded ranging signals in a highly effective and versatile manner, operable either as an all-harmonic system in near-earth orbital tracking or as a hybrid system for tracking more distant spacecraft. The system also combines the utilization of the two types of signals in a very attractive technique for speeding up the process of acquiring the ambiguity resolving code component in tracking spacecraft at cislunar and translunar distances.The theoretical analysis of system performance and errors is followed by a summary of performance data gathered to date by operating GRARR systems on a number of NASA missions.  相似文献   
44.
General principles are outlined for the design of space infrared telescopes intended to cool by radiation to the lowest temperatures attainable without the use of on-board cryogens, and assuming on-orbit cooling after a warm launch. Maximum protection from solar and earth heating, maximum radiating area and efficiency and minimum absorbing area and absorptivity are the obvious basic criteria. The optimised design is a short, fat telescope surrounded by a series of radiation shields, each cooled by its own radiator. Maximising the longitudinal conductivity of the radiation shields and of the telescope tube itself is important both to the on-orbit cooling time and the final achieveable temperature. Realistic designs take between 80 and 200 days to cool to within a few degrees of equilibrium temperatures, depending on the materials used. Great advantages accrue from the use of an orbit distant from earth. Both simple models and detailed simulations suggest that temperatures of 30 to 40 K are attainable in high earth orbits. Placing a radiatively cooled telescope in a halo orbit around the Lagrangian point L2 is a particularly attractive option and significantly lower temperatures can be achieved there than in Earth orbit. Optimised radiative cooling is an important element of the small Japanese mission SMIRT. We suggest that a combination of an ESA Medium-sized Mission with a NASA Explorer to send a 2m+ telescope to an L2 halo orbit would provide a cost-effective and powerful long-duration facility for the early 21st century.  相似文献   
45.
This study was initially undertaken to understand how commonalities among the application of proven automation processes such as aircraft control, nuclear power generation, auto manufacturing, etc. could be applied to spacecraft operations at NASA. These industries applied automation to reduce human repetitive task and mitigate risk, rather than create complete "lights out" operations as was the goal at NASA.  相似文献   
46.
A technique has been developed which allows relatively accurate modelling of cometary gas production from nothing more than a visible light curve. Application to P/Halley suggests the production rate of parent molecules will be about 2.6 × 1029 per second on March 10, 1986, for example. The uncertainties and intrinsic limitations in this approach are outlined. The theory is then extended to predictions of abundance of other gaseous species, and a photometric model of these gases provided. Combined with the dust model of N. Divine, preliminary predictions of the luminance of P/Halley as seen in any direction from inside the coma or outside can be provided for λλ3000–7000.  相似文献   
47.
The effects of instrumentation accuracy and configuration on estimation error are studied for the small expandable-tether deployment system (SEDS) using a continuous-discrete extended Kalman filter (CDEKF) state estimator. A twelfth order model that incorporates the rigid body modes of the tether as well as the satellite attitude dynamics is developed. Simulation results using the model and the estimator indicate that the originally planned instrumentation package could not estimate the state vector adequately. Recommendations are made and results presented that reduce the estimation error by adding instruments and increasing selected measurement accuracies  相似文献   
48.
Digitally coded radar waveforms can be used to obtain large time-bandwidth products (pulse compression ratios). It is demonstrated that periodic radar waveforms with zero sidelobes or almost zero sidelobes can be defined. A perfect periodic code is a periodic code whose autocorrelation function has zero sidelobes and whose amplitude is uniform (maximum power efficiency=1). An asymptotically perfect periodic code has the property that as the number of elements in the code goes to infinity the autocorrelation function of the code has zero sidelobes and its power efficiency is one. The authors introduce a class of radar waveforms that are either perfect or asymptotically perfect codes. These are called reciprocal codes because they can be derived through a linear transformation of known codes. The aperiodic performance of the reciprocal code is examined  相似文献   
49.
Effective use of military cellular automata such as military data array processor (MilDAP) and geometric arithmetic parallel processor (GAPP), in weak, subpixel target detection is shown to be possible by using new signal processing regimes based on binary ranking filter theory. By using binary ranking filters, the MilDAP can furnish 6 dB of processing gain against white Gaussian noise while monitoring from one to four million potential target tracks at 10-40 frames/s. GAPP is shown to be capable of monitoring 3.7 million tracks over 216×384 detectors at 14000 frames/s and, in a time sharing mode, 15 million tracks over 432×768 detectors at 24 frames/s. The special case of threatening targets is discussed, as well as alternate cellular architectures which use multidimensional binary ranking filters in multidimensional coordinate systems  相似文献   
50.
During flight, aircraft avionics transmit and receive RF signals to/from antennas over coaxial cables. As the density and complexity of onboard avionics increases, the electromagnetic interference (EMI) environment degrades proportionately, leading to decreasing signal-to-noise ratios (SNRs) and potential safety concerns. The coaxial cables are inherently lossy, limiting the RF signal bandwidth while adding considerable weight. To overcome these limitations, we have investigated a fiber optic communications link for aircraft that utilizes wavelength division multiplexing (WDM) to support the simultaneous transmission of multiple signals (including RF) over a single optical fiber. Optical fiber has many advantages over coaxial cable, particularly lower loss, greater bandwidth, and immunity to EMI. In this paper, we demonstrate that WDM can be successfully used to transmit multiple RF signals over a single optical fiber with no appreciable signal degradation. We investigate the transmission of FM and AM analog modulated signals, as well as FSK digital modulated signals, over a fiber optic link (FOL) employing WDM. We present measurements of power loss, delay, SNR, carrier-to-noise ratio (CNR), total harmonic distortion (THD), and bit error rate (BER). Our experimental results indicate that WDM is a fiber optic technology suitable for avionics applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号