全文获取类型
收费全文 | 5415篇 |
免费 | 9篇 |
国内免费 | 18篇 |
专业分类
航空 | 2836篇 |
航天技术 | 1920篇 |
综合类 | 23篇 |
航天 | 663篇 |
出版年
2021年 | 30篇 |
2019年 | 32篇 |
2018年 | 57篇 |
2017年 | 31篇 |
2014年 | 82篇 |
2013年 | 132篇 |
2012年 | 107篇 |
2011年 | 155篇 |
2010年 | 114篇 |
2009年 | 177篇 |
2008年 | 245篇 |
2007年 | 136篇 |
2006年 | 140篇 |
2005年 | 143篇 |
2004年 | 114篇 |
2003年 | 170篇 |
2002年 | 101篇 |
2001年 | 176篇 |
2000年 | 109篇 |
1999年 | 140篇 |
1998年 | 164篇 |
1997年 | 123篇 |
1996年 | 169篇 |
1995年 | 215篇 |
1994年 | 182篇 |
1993年 | 120篇 |
1992年 | 127篇 |
1991年 | 76篇 |
1990年 | 62篇 |
1989年 | 138篇 |
1988年 | 62篇 |
1987年 | 66篇 |
1986年 | 60篇 |
1985年 | 195篇 |
1984年 | 150篇 |
1983年 | 130篇 |
1982年 | 133篇 |
1981年 | 176篇 |
1980年 | 58篇 |
1979年 | 41篇 |
1978年 | 50篇 |
1977年 | 53篇 |
1976年 | 38篇 |
1975年 | 58篇 |
1974年 | 38篇 |
1973年 | 42篇 |
1972年 | 51篇 |
1971年 | 42篇 |
1970年 | 44篇 |
1969年 | 37篇 |
排序方式: 共有5442条查询结果,搜索用时 15 毫秒
291.
Chao-Song Huang J.C. Foster K. Yumoto J.L. Chau O. Veliz 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2005,36(12):2407-2412
It is well known that the solar wind can significantly affect high-latitude ionospheric dynamics. However, the effects of the solar wind on the middle- and low-latitude ionosphere are much less studied. In this paper, we report observations that large perturbations in the middle- and low-latitude ionosphere are well correlated with solar wind variations. In one event, a significant (20–30%) decrease of the midlatitude ionospheric electron density over a large latitudinal range was related to a sudden drop in the solar wind pressure and a northward turning of the interplanetary magnetic field, and the density decrease became larger at lower latitudes. In another event, periodic perturbations in the dayside equatorial ionospheric E × B drift and electrojet were closely associated with variations in the interplanetary electric field. Since the solar wind is always changing with time, it can be a very important and common source of ionospheric perturbations at middle- and low-latitudes. The relationship between solar wind variations and significant ionospheric perturbations has important applications in space weather. 相似文献
292.
E. Echer W.D. Gonzalez A. Dal Lago L.E.A. Vieira F.L. Guarnieri A.L.C. Gonzalez N.J. Schuch 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2005,36(12):2313-2317
In this work a study is performed on the correlation between fast forward interplanetary shock parameters at 1 Astronomical Unit and sudden impulse (SI) amplitudes in the H-component of the geomagnetic field, for periods of solar activity maximum (year 2000) and minimum (year 1995–1996). Solar wind temperature, density and speed, and total magnetic field, were taken to calculate the static pressures (thermal and magnetic) both in the upstream and downstream sides of the shocks. The variations of the solar wind parameters and pressures were then correlated with SI amplitudes. The solar wind speed variations presented good correlations with sudden impulses, with correlation coefficients larger than 0.70 both in solar maximum and solar minimum, whereas the solar wind density presented very low correlation. The parameter better correlated with SI was the square root dynamic pressure variation, showing a larger correlation during solar maximum (r = 0.82) than during solar minimum (r = 0.77). The correlations of SI with square root thermal and magnetic pressure were smaller than with the dynamic pressure, but they also present a good correlation, with r > 0.70 during both solar maximum and minimum. Multiple linear correlation analysis of SI in terms of the three pressure terms have shown that 78% and 85% of the variance in SI during solar maximum and minimum, respectively, are explained by the three pressure variations. Average sudden impulse amplitude was 25 nT during solar maximum and 21 nT during solar minimum, while average square root dynamic pressure variation is 1.20 and 0.86 nPa1/2 during solar maximum and minimum, respectively. Thus on average, fast forward interplanetary shocks are 33% stronger during solar maximum than during solar minimum, and the magnetospheric SI response has amplitude 20% higher during solar maximum than during solar minimum. A comparison with theoretical predictions (Tsyganenko’s model corrected by Earth’s induced currents) of the coefficient of sudden impulse change with solar wind dynamic pressure variation showed excellent agreement, with values around 17 nT/nPa1/2. 相似文献
293.
Noise in wireless systems from solar radio bursts 总被引:1,自引:0,他引:1
L.J. Lanzerotti D.E. Gary G.M. Nita D.J. Thomson C.G. Maclennan 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2005,36(12):2253-2257
Solar radio bursts were first discovered as result of their interference in early defensive radar systems during the Second World War (1942). Such bursts can still affect radar systems, as well as new wireless technologies. We have investigated a forty-year record of solar radio burst data (1960–1999) as well as several individual radio events in the 23rd solar cycle. This paper reviews the results of a portion of this research. Statistically, for frequencies f 1 GHz (near current wireless bands), there can be a burst with amplitudes >103 solar flux units (SFU; 1 SFU = 10−22 W/m2) every few days during solar maximum conditions, and such burst levels can produce problems in contemporary wireless systems. 相似文献
294.
S.J. Wang D. Maia M. Pick G. Aulanier J.-M. Malherbe J.-P. Delaboudinire 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2005,36(12):2273
We present our research on a fast and decelerating partial halo coronal mass ejection (CME) event detected in multi-wavelengths in the chromosphere and the corona on 14 October, 1999. The event involved a whole complex active area which spanned more than 40° of heliolongitude. It included a strong solar flare (XI/1N) and a complex eruptive filament within an active region of the entire complex. Especially, several radio sources were detected in the decimetric range prior to the CME by the Nançay Radioheliograph (NRH). A linear force-free field extrapolation of the Michelson Doppler Imager (MDI) magnetogram was performed to calculate the magnetic topology of the complex prior to the triggering of the event. The presence of a coronal null point combined with the occurrence of two distant and nearly simultaneous radio sources put strong arguments in favor of the generalized breakout model for the triggering of the eruption. The analysis of the subsequent development of the event suggests that large interconnecting loops were ejected together with the CME. 相似文献
295.
D. T. Young J. L. Burch R. G. Gomez A. De Los Santos G. P. Miller P. Wilson N. Paschalidis S. A. Fuselier K. Pickens E. Hertzberg C. J. Pollock J. Scherrer P. B. Wood E. T. Donald D. Aaron J. Furman D. George R. S. Gurnee R. S. Hourani A. Jacques T. Johnson T. Orr K. S. Pan S. Persyn S. Pope J. Roberts M. R. Stokes K. J. Trattner J. M. Webster 《Space Science Reviews》2016,199(1-4):407-470
296.
J. B. Blake B. H. Mauk D. N. Baker P. Carranza J. H. Clemmons J. Craft W. R. Crain A. Crew Y. Dotan J. F. Fennell R. H. Friedel L. M. Friesen F. Fuentes R. Galvan C. Ibscher A. Jaynes N. Katz M. Lalic A. Y. Lin D. M. Mabry T. Nguyen C. Pancratz M. Redding G. D. Reeves S. Smith H. E. Spence J. Westlake 《Space Science Reviews》2016,199(1-4):309-329
297.
Magnetospheric Multiscale Overview and Science Objectives 总被引:1,自引:0,他引:1
298.
299.
300.
V. V. Semenov V. A. Volkov M. C. Kwon J. S. S. Sidhu 《Russian Aeronautics (Iz VUZ)》2016,59(2):211-217
The dependence of the wave resistance coefficients for planar periodic reliefs on the similarity parameters is investigated. It is proved that the wave resistance coefficients of the infinite reliefs and their finite analogs in the case of the whole wave numbers coincide, whereas in the case of the fractional wave numbers they differ. 相似文献