首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5413篇
  免费   12篇
  国内免费   18篇
航空   2836篇
航天技术   1921篇
综合类   23篇
航天   663篇
  2021年   30篇
  2019年   32篇
  2018年   57篇
  2017年   31篇
  2014年   82篇
  2013年   132篇
  2012年   107篇
  2011年   155篇
  2010年   114篇
  2009年   177篇
  2008年   245篇
  2007年   136篇
  2006年   140篇
  2005年   143篇
  2004年   114篇
  2003年   170篇
  2002年   101篇
  2001年   176篇
  2000年   109篇
  1999年   140篇
  1998年   164篇
  1997年   123篇
  1996年   169篇
  1995年   215篇
  1994年   182篇
  1993年   120篇
  1992年   127篇
  1991年   76篇
  1990年   62篇
  1989年   138篇
  1988年   62篇
  1987年   66篇
  1986年   60篇
  1985年   195篇
  1984年   150篇
  1983年   130篇
  1982年   133篇
  1981年   176篇
  1980年   58篇
  1979年   41篇
  1978年   50篇
  1977年   53篇
  1976年   38篇
  1975年   58篇
  1974年   38篇
  1973年   42篇
  1972年   51篇
  1971年   42篇
  1970年   44篇
  1969年   37篇
排序方式: 共有5443条查询结果,搜索用时 0 毫秒
691.
Gaia is the most ambitious space astrometry mission currently envisaged and is a technological challenge in all its aspects. We describe a proposal for the payload data handling system of Gaia, as an example of a high-performance, real-time, concurrent, and pipelined data system. This proposal includes the front-end systems for the instrumentation, the data acquisition and management modules, the star data processing modules, and the payload data handling unit. We also review other payload and service module elements and we illustrate a data flux proposal.  相似文献   
692.
693.
Today, the tools are in our hands to enable us to travel away from our home planet and become citizens of the solar system. Even now, we are seriously beginning to develop the robust infrastructure that will make the 21st century the Century of Space Travel. But this bold step must be taken with due concern for the health, safety and wellbeing of future space explorers. Our long experience with space biomedical research convinces us that, if we are to deal effectively with the medical and biomedical issues of exploration, then dramatic and bold steps are also necessary in this field. We can no longer treat the human body as if it were composed of muscles, bones, heart and brain acting independently. Instead, we must lead the effort to develop a fully integrated view of the body, with all parts connected and fully interacting in a realistic way. This paper will present the status of current (2000) plans by the National Space Biomedical Research Institute to initiate research in this area of integrative physiology and medicine. Specifically, three example projects are discussed as potential stepping stones towards the ultimate goal of producing a digital human. These projects relate to developing a functional model of the human musculoskeletal system and the heart.  相似文献   
694.
Improved spacecraft shield design requires early entry of radiation constraints into the design process to maximize performance and minimize costs. As a result, we have been investigating high-speed computational procedures to allow shield analysis from the preliminary design concepts to the final design. In particular, we will discuss the progress towards a full three-dimensional and computationally efficient deterministic code for which the current HZETRN evaluates the lowest-order asymptotic term. HZETRN is the first deterministic solution to the Boltzmann equation allowing field mapping within the International Space Station (ISS) in tens of minutes using standard finite element method (FEM) geometry common to engineering design practice enabling development of integrated multidisciplinary design optimization methods. A single ray trace in ISS FEM geometry requires 14 ms and severely limits application of Monte Carlo methods to such engineering models. A potential means of improving the Monte Carlo efficiency in coupling to spacecraft geometry is given in terms of re-configurable computing and could be utilized in the final design as verification of the deterministic method optimized design.  相似文献   
695.
Over the last 30 years there has been a growing Australian capability in very long-range radar systems, especially over the horizon radar (OTHR) and a related technology, surface wave radar (SWR). Both operate in the high frequency (HF) band between 3 and 30 MegaHertz (MHz), which are wavelengths between 100 and 10 metres, respectively. Based on current evidence, it appears that Australia may have found the tools with which to conduct efficient long-range surface and air surveillance more effectively than by the single use of traditional surveillance forces. Given increasing success and refinement of these technologies, one can see that the SWR systems in particular could, in addition, satisfy a number of potential export requirements and earn useful export credits.  相似文献   
696.
Recent successes in the effort to miniaturize spacecraft components using MEMS technology, integrated passive components, and low power electronics have driven the need for very low power, low profile, low mass micro-power sources for micro/nanospacecraft applications. Recent work at JPL has focused upon developing thin film/micro-batteries compatible with temperature sensitive substrates. A process to prepare crystalline LiCoO2 films with RF sputtering and moderate (<700°C) annealing temperature has been developed. Thin film batteries with cathode films prepared with this process have specific capacities approaching the practical limit for LiCoO2, with acceptable rate capabilities and discharge voltage profiles. Solid-state micro-scale batteries have also been fabricated with feature sizes on the order of 50 microns  相似文献   
697.
698.
Previously, K. Bakhtar and E. Sagal [ibid. vol. 17, pp. 4-11, 2002] made remarkable claims for the performance of the Bakhtar Associates ground-penetrating radar (GPR) in detecting and classifying buried unexploded ordnance (UXO). In this article, we report the results of the series of blind tests on the EarthRadar carried out during the Fall of 2000 and Spring of 2001, which led to very different conclusions regarding the radar's performance. The contents of this article are excerpted from the final report on the testing, prepared by the Institute for Defense Analyses  相似文献   
699.
In the multistage theory of carcinogenesis, cells progress to cancer through a series of discrete, irreversible, heritable genetic alterations or mutations. However data on radiation-induced cancer incidence in rat skin suggests that some part of an intermediate repairable alteration may occur. Data are presented on cancer induction in rat skin exposed to the following radiations: 1. an electron beam (LET=0.34 keV/um, 2. a neon ion beam (LET=25 keV/um and 3. an argon ion beam (LET=125 keV/um. The latter 2 beams were generated by the Bevalac at the Lawrence Berkeley Laboratory, Berkeley, CA. About 6.0 cm2 of skin was irradiated per rat. The rats were observed every 6 weeks for at least 78 weeks and tumors were scored at first occurrence. Several histological types of cancer, including squamous and basal cell carcinomas, were induced. The cancer yield versus radiation dose was fitted by the quadratic equation (Y(D)=CLD+BD2), and the parameters C and B were estimated for each type of radiation. Analysis of the DNA from the electron-induced carcinomas indicated that K-ras and/or c-myc oncogenes were activated in all tumors tested, although only a small proportion of neon-induced tumors showed similar activation. In situ hybridization indicated that the cancers contain subpopulations of cells with differing amounts of c-myc and H-ras amplification. The results are consistent with the idea that ionizing radiation produces carcinogenically relevant lesions via 2 repairable events at low LET and via a non-repairable, linked event pathway at high LET; either pathway may advance the cell by 1 stage in the multistage model. The model, if validated, permits the direct calculation of cancer risk in rat skin in a way that can be subjected to experimental testing.  相似文献   
700.
The Electric Power System (EPS) being built for the International Space Station has undergone several significant changes over the last year, as major design decisions have been made for the overall station. While the basic topology and system elements have remained the same, there are important differences in connectivity, assembly sequence, and start-up. The key drivers for these changes in architecture have been the goal to simplify verification, and most significantly, the introduction of extensive Russian participation in the program. Having the Russians join the international community in this project has resulted in an expanded station size, larger crew, and almost doubled the observable surface of the Earth covered by the station. For the power system it has meant additional interfaces for power transfer, and new challenges for solar tracking at the higher inclination orbit. This paper reviews the current architecture and emphasizes the new features that have evolved, as the design for the new, larger station has developed. Additionally, the possible application of developing technology to the station, and other future missions is considered  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号