首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7586篇
  免费   29篇
  国内免费   23篇
航空   3889篇
航天技术   2648篇
综合类   33篇
航天   1068篇
  2021年   52篇
  2019年   53篇
  2018年   99篇
  2017年   64篇
  2016年   59篇
  2014年   138篇
  2013年   180篇
  2012年   163篇
  2011年   228篇
  2010年   166篇
  2009年   259篇
  2008年   343篇
  2007年   188篇
  2006年   184篇
  2005年   187篇
  2004年   171篇
  2003年   248篇
  2002年   147篇
  2001年   255篇
  2000年   152篇
  1999年   189篇
  1998年   233篇
  1997年   160篇
  1996年   209篇
  1995年   273篇
  1994年   251篇
  1993年   150篇
  1992年   183篇
  1991年   99篇
  1990年   92篇
  1989年   198篇
  1988年   88篇
  1987年   88篇
  1986年   88篇
  1985年   253篇
  1984年   206篇
  1983年   180篇
  1982年   192篇
  1981年   231篇
  1980年   81篇
  1979年   61篇
  1978年   68篇
  1977年   69篇
  1976年   49篇
  1975年   87篇
  1974年   53篇
  1973年   53篇
  1972年   75篇
  1971年   56篇
  1970年   54篇
排序方式: 共有7638条查询结果,搜索用时 15 毫秒
181.
The Lightning and Radio Emission Detector (LRD) instrument will be carried by the Galileo Probe into Jupiter's atmosphere. The LRD will verify the existence of lightning in the atmosphere and will determine the details of many of its basic characteristics. The instrument, operated in its magnetospheric mode at distances of about 5, 4, 3, and 2 planetary radii from Jupiter's center, will also measure the radio frequency (RF) noise spectrum in Jupiter's magnetosphere. The LRD instrument is composed of a ferritecore radio frequency antenna ( 100 Hz to 100 kHz) and two photodiodes mounted behind individual fisheye lenses. The output of the RF antenna is analyzed both separately and in coincidence with the optical signals from the photodiodes. The RF antenna provides data both in the frequency domain (with three narrow-band channels, primarily for deducing the physical properties of distant lightning) and in the time domain with a priority scheme (primarily for determining from individual RF waveforms the physical properties of closeby-lightning).  相似文献   
182.
Beyond the magnetic influence of the Earth, the flux of galactic cosmic radiation (GCR) represents a radiological concern for long-term manned space missions. Current concepts of radiation quality and equivalent dose are inadequate for accurately specifying the relative biological "efficiency" of low doses of such heavily ionising radiations, based as they are on the single parameter of Linear Energy Transfer (LET). Such methods take no account of the mechanisms, nor of the highly inhomogeneous spatial structure, of energy deposition in radiation tracks. DNA damage in the cell nucleus, which ultimately leads to the death or transformation of the cell, is usually initiated by electrons liberated from surrounding molecules by the incident projectile ion. The characteristics of these emitted "delta-rays", dependent primarily upon the charge and velocity of the ion, are considered in relation to an idealised representation of the cellular environment. Theoretically calculated delta-ray energy spectra are multiplied by a series of weighting algorithms designed to represent the potential for DNA insult in this environment, both in terms of the quantity and quality of damage. By evaluating the resulting curves, and taking into account the energy spectra of heavy ions in space, a relative measure of the biological relevance of the most abundant GCR species is obtained, behind several shielding configurations. It is hoped that this method of assessing the radiation quality of galactic cosmic rays will be of value when considering the safety of long-term manned space missions.  相似文献   
183.
The Spacelab-Mir-1 (SLM-1) mission is the first docking of the Space Shuttle Atlantis (STS-71) with the Orbital Station Mir in June 1995. The SLM-1 "Greenhouse-2" experiment will utilize the Russian-Bulgarian-developed plant growth unit (Svet). "Greenhouse-2" will include two plantings (1) designed to test the capability of Svet to grow a crop of Superdwarf wheat from seed to seed, and (2) to provide green plant material for post-flight analysis. Protocols, procedures, and equipment for the experiment have been developed by the US-Russian science team. "Greenhouse-2" will also provide the first orbital test of a new Svet Instrumentation System (SIS) developed by Utah State University to provide near real time data on plant environmental parameters and gas-exchange rates. SIS supplements the Svet control and monitoring system with additional sensors for substrate moisture, air temperature, IR leaf temperature, light, oxygen, pressure, humidity, and carbon-dioxide. SIS provides the capability to monitor canopy transpiration and net assimilation of the plants growing in each vegetation unit (root zone) by enclosing the canopy in separate, retractable, ventilated leaf chambers. Six times during the seed-to-seed experiment, plant samples will be collected, leaf area measured, and plant parts fixed and/or dried for ground analysis. A second planting initiated 30 days before the arrival of a U.S. Shuttle [originally planned to be STS-71] is designed to provide green material at the vegetative development stage for ground analysis. [As this paper is being edited, the experiment has been delayed until after the arrival of STS-71.]  相似文献   
184.
A wide variety of observations on cells in space, admittedly made under constraining and unnatural conditions in many cases, have led to experimental results that were surprising or unexpected. Reproducibility, freedom from artifacts, and plausibility must be considered in all cases, even when results are not surprising. The papers in the symposium on "Theories and Models on the Biology of Cells in Space" are dedicated to the subject of the plausibility of cellular responses to gravity--inertial accelerations between 0 and 9.8 m/s2 and higher. The mechanical phenomena inside the cell, the gravitactic locomotion of single eukaryotic and prokaryotic cells, and the effects of inertial unloading on cellular physiology are addressed in theoretical and experimental studies.  相似文献   
185.
The Suess-Urey (S-U) mission has been proposed as a NASA Discovery mission to return samples of matter from the Sun to the Earth for isotopic and chemical analyses in terrestrial laboratories to provide a major improvement in our knowledge of the average chemical and isotopic composition of the solar system. The S-U spacecraft and sample return capsule will be placed in a halo orbit around the L1 Sun-Earth libration point for two years to collect solar wind ions which implant into large passive collectors made of ultra-pure materials. Constant Spacecraft-Sun-Earth geometries enable simple spin stabilized attitude control, simple passive thermal control, and a fixed medium gain antenna. Low data requirements and the safety of a Sun-pointed spinner, result in extremely low mission operations costs.  相似文献   
186.
The theory of electron cyclotron maser emission and its application to solar spike bursts are reviewed. By analogy with the Earth's AKR, three sources of free energy are considered: a loss-cone anisotropy, a velocity-space hole, and a trapped distribution. The problem of how the radiation escapes through the second harmonic absorption layer is emphasized. Harmonic emission due to z mode coalescence may operate for some bursts, but the 2–5s delay between hard X-ray bursts and spike bursts suggests that some other mechanisms is required for most spike bursts. A model involving formation of a trapped distribution in low-density regions neighboring the flaring flux tube is considered.  相似文献   
187.
The heating of solar coronal loops by the resonant absorption or phase-mixing of incident wave energy is investigated in the framework of 3D nonlinear magnetohydrodynamics (MHD) by means of numerical simulations.  相似文献   
188.
The application of chaos theory has become popular to understand the nature of various features of solar activity because most of them are far from regular. The usual approach, however, that is based on finding low-dimensional structures of the underlying processes seems to be successful only in a few exceptional cases, such as in rather coherent phenomena as coronal pulsations. It is important to note that most phenomena in solar radio emission are more complex. We present two kinds of techniques from nonlinear dynamics which can be useful to analyse such phenomena:
  1. Fragmentation processes observed in solar spike events are studied by means of symbolic dynamics methods. Different measures of complexity calculated from such observations reveal that there is some order in this fragmentation.
  2. Bursts are a typical transient phenomenon. To study energization processes causing impulsive microwave bursts, the wavelet analysis is applied. It exhibits structural differences of the pre- and post-impulsive phase in cases where the power spectra of both are not distinct.
  相似文献   
189.
Protons of a specific energy, 55 MeV, have been found to induce primary high grade astrocytomas (HGA) in the Rhesus monkey (Macaca mulatta). Brain tumors of this type were not induced by protons of other energies (32-2,300 MeV). Induction of HGA has been identified in human patients who have had radiation therapy to the head. We believe that the induction of HGA in the monkey is a consequence of dose distribution, not some unique "toxic" property of protons. Comparison of the human experience with the monkey data indicates the RBE for induction of brain tumors to be about one. It is unlikely that protons cause an unusual change in oncogenic expression, as compared to conventional electromagnetic radiation.  相似文献   
190.
We describe work that has recently been completed on deriving the fundamental parameters of eight WR stars through the photoionization modelling of their surrounding nebulae using non-LTE WR flux distributions. The resulting effective temperatures range from 57 000–71 000 K for the WN4-5 stars and <30 000–42 000 K for the WN6-8 stars. The derived stellar parameters are compared with those obtained from stellar emission line modelling. We find good agreement for the hot early WN stars, indicating that the non-LTE WR flux distributions have essentially the correct shape in the crucial far-UV region. We find lower temperatures for the four cooler late WN stars, particularly for the two WN6 stars. For the nebulae surrounding these stars, we find that the model flux distributions produce too much nebular ionization. We suggest that these discrepancies arise because of the lack of line-blanketing in the WR atmospheres. For the WO1 central star of G2.4+1.4, with strong nebular He II 4686 A emission, we derive a temperature of 105 000 K, somewhat less than previous estimates. The positions of our eight WR stars on the H-R diagram are compared with the evolutionary tracks of Maeder (1990) for solar metallicity. In common with previous workers, we find that our derived luminosities are too low, giving an initial mass range of 25–40 M, below that expected for the majority of WR stars.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号