首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   668篇
  免费   25篇
  国内免费   19篇
航空   280篇
航天技术   91篇
综合类   36篇
航天   305篇
  2024年   2篇
  2023年   4篇
  2022年   4篇
  2021年   7篇
  2020年   5篇
  2019年   10篇
  2018年   8篇
  2017年   4篇
  2016年   12篇
  2015年   2篇
  2014年   11篇
  2013年   11篇
  2012年   22篇
  2011年   18篇
  2010年   13篇
  2009年   10篇
  2008年   11篇
  2007年   32篇
  2006年   21篇
  2005年   35篇
  2004年   13篇
  2003年   14篇
  2002年   16篇
  2001年   11篇
  2000年   5篇
  1999年   7篇
  1998年   27篇
  1997年   16篇
  1996年   23篇
  1995年   31篇
  1994年   24篇
  1993年   12篇
  1992年   20篇
  1991年   10篇
  1990年   19篇
  1989年   17篇
  1988年   25篇
  1987年   27篇
  1986年   6篇
  1985年   31篇
  1984年   24篇
  1983年   29篇
  1982年   20篇
  1981年   12篇
  1980年   13篇
  1979年   5篇
  1978年   5篇
  1977年   4篇
  1975年   4篇
排序方式: 共有712条查询结果,搜索用时 109 毫秒
671.
Recent observations have detected trace amounts of CH(4) heterogeneously distributed in the martian atmosphere, which indicated a subsurface CH(4) flux of ~2 x 10(5) to 2 x 10(9) cm(2) s(1). Four different origins for this CH(4) were considered: (1) volcanogenic; (2) sublimation of hydrate- rich ice; (3) diffusive transport through hydrate-saturated cryosphere; and (4) microbial CH(4) generation above the cryosphere. A diffusive flux model of the martian crust for He, H(2), and CH(4) was developed based upon measurements of deep fracture water samples from South Africa. This model distinguishes between abiogenic and microbial CH(4) sources based upon their isotopic composition, and couples microbial CH(4) production to H(2) generation by H(2)O radiolysis. For a He flux of approximately 10(5) cm(2) s(1) this model yields an abiogenic CH(4) flux and a microbial CH(4) flux of approximately 10(6) and approximately 10(9) cm(2) s(1), respectively. This flux will only reach the martian surface if CH(4) hydrate is saturated in the cryosphere; otherwise it will be captured within the cryosphere. The sublimation of a hydrate-rich cryosphere could generate the observed CH(4) flux, whereas microbial CH(4) production in a hypersaline environment above the hydrate stability zone only seems capable of supplying approximately 10(5) cm(2) s(1) of CH(4). The model predicts that He/H(2)/CH(4)/C(2)H(6) abundances and the C and H isotopic values of CH(4) and the C isotopic composition of C(2)H(6) could reveal the different sources. Cavity ring-down spectrometers represent the instrument type that would be most capable of performing the C and H measurements of CH(4) on near future rover missions and pinpointing the cause and source of the CH(4) emissions.  相似文献   
672.
Magnetism, iron minerals, and life on Mars   总被引:1,自引:0,他引:1  
A short critical review is provided on two questions linking magnetism and possible early life on Mars: (1) Did Mars have an Earth-like internal magnetic field, and, if so, during which period and was it a requisite for life? (2) Is there a connection between iron minerals in the martian regolith and life? We also discuss the possible astrobiological implications of magnetic measurements at the surface of Mars using two proposed instruments. A magnetic remanence device based on magnetic field measurements can be used to identify Noachian age rocks and lightning impacts. A contact magnetic susceptibility probe can be used to investigate weathering rinds on martian rocks and identify meteorites among the small regolith rocks. Both materials are considered possible specific niches for microorganisms and, thus, potential astrobiological targets. Experimental results on analogues are presented to support the suitability of such in situ measurements.  相似文献   
673.
The scenario of lithopanspermia describes the viable transport of microorganisms via meteorites. To test the first step of lithopanspermia, i.e., the impact ejection from a planet, systematic shock recovery experiments within a pressure range observed in martian meteorites (5-50 GPa) were performed with dry layers of microorganisms (spores of Bacillus subtilis, cells of the endolithic cyanobacterium Chroococcidiopsis, and thalli and ascocarps of the lichen Xanthoria elegans) sandwiched between gabbro discs (martian analogue rock). Actual shock pressures were determined by refractive index measurements and Raman spectroscopy, and shock temperature profiles were calculated. Pressure-effect curves were constructed for survival of B. subtilis spores and Chroococcidiopsis cells from the number of colony-forming units, and for vitality of the photobiont and mycobiont of Xanthoria elegans from confocal laser scanning microscopy after live/dead staining (FUN-I). A vital launch window for the transport of rock-colonizing microorganisms from a Mars-like planet was inferred, which encompasses shock pressures in the range of 5 to about 40 GPa for the bacterial endospores and the lichens, and a more limited shock pressure range for the cyanobacterium (from 5-10 GPa). The results support concepts of viable impact ejections from Mars-like planets and the possibility of reseeding early Earth after asteroid cataclysms.  相似文献   
674.
675.
11月28日,国际豪华私人飞行服务公司VistaJet宣布引进56架全新庞巴迪环球系列客机,并意向购买86架客机,总值共超过78亿美元。此为公务航空史上最大宗买卖,计划于2014年开始交付。新飞机订单由25架环球5000、25架环球6000,和6架环球8000喷射客机所组  相似文献   
676.
Spore-forming bacteria are of particular concern in the context of planetary protection because their tough endospores may withstand certain sterilization procedures as well as the harsh environments of outer space or planetary surfaces. To test their hardiness on a hypothetical mission to Mars, spores of Bacillus subtilis 168 and Bacillus pumilus SAFR-032 were exposed for 1.5 years to selected parameters of space in the experiment PROTECT during the EXPOSE-E mission on board the International Space Station. Mounted as dry layers on spacecraft-qualified aluminum coupons, the "trip to Mars" spores experienced space vacuum, cosmic and extraterrestrial solar radiation, and temperature fluctuations, whereas the "stay on Mars" spores were subjected to a simulated martian environment that included atmospheric pressure and composition, and UV and cosmic radiation. The survival of spores from both assays was determined after retrieval. It was clearly shown that solar extraterrestrial UV radiation (λ≥110?nm) as well as the martian UV spectrum (λ≥200?nm) was the most deleterious factor applied; in some samples only a few survivors were recovered from spores exposed in monolayers. Spores in multilayers survived better by several orders of magnitude. All other environmental parameters encountered by the "trip to Mars" or "stay on Mars" spores did little harm to the spores, which showed about 50% survival or more. The data demonstrate the high chance of survival of spores on a Mars mission, if protected against solar irradiation. These results will have implications for planetary protection considerations.  相似文献   
677.
Abstract Modern ecological niches are teeming with an astonishing diversity of microbial life in biofilms closely associated with mineral surfaces, which highlights the remarkable success of microorganisms in conquering the challenges and capitalizing on the benefits presented by the mineral-water interface. Biofilm formation capability likely evolved on early Earth because biofilms provide crucial cell survival functions. The potential toxicity of mineral surfaces toward cells and the complexities of the mineral-water-cell interface in determining the toxicity mechanisms, however, have not been fully appreciated. Here, we report a previously unrecognized role for extracellular polymeric substances (EPS), which form biofilms in shielding cells against the toxicity of mineral surfaces. Using colony plating and LIVE/DEAD staining methods in oxide suspensions versus oxide-free controls, we found greater viability of wild-type, EPS-producing strains of Pseudomonas aeruginosa PAO1 compared to their isogenic knockout mutant with defective biofilm-producing capacity. Oxide toxicity was specific to its surface charge and particle size. High resolution transmission electron microscopy (HRTEM) images and assays for highly reactive oxygen species (hROS) on mineral surfaces suggested that EPS shield via both physical and chemical mechanisms. Intriguingly, qualitative as well as quantitative measures of EPS production showed that toxic minerals induced EPS production in bacteria. By determining the specific toxicity mechanisms, we provide insight into the potential impact of mineral surfaces in promoting increased complexity of cell surfaces, including EPS and biofilm formation, on early Earth. Key Words: Mineral toxicity-Bacteria-EPS evolution-Biofilms-Cytotoxicity-Silica-Anatase-Alumina. Astrobiology 12, 785-798.  相似文献   
678.
Although a large fraction of the world's biomass resides in the subsurface, there has been no study of the effects of catastrophic disturbance on the deep biosphere and the rate of its subsequent recovery. We carried out an investigation of the microbiology of a 1.76 km drill core obtained from the ~35 million-year-old Chesapeake Bay impact structure, USA, with robust contamination control. Microbial enumerations displayed a logarithmic downward decline, but the different gradient, when compared to previously studied sites, and the scatter of the data are consistent with a microbiota influenced by the geological disturbances caused by the impact. Microbial abundance is low in buried crater-fill, ocean-resurge, and avalanche deposits despite the presence of redox couples for growth. Coupled with the low hydraulic conductivity, the data suggest the microbial community has not yet recovered from the impact ~35 million years ago. Microbial enumerations, molecular analysis of microbial enrichment cultures, and geochemical analysis showed recolonization of a deep region of impact-fractured rock that was heated to above the upper temperature limit for life at the time of impact. These results show how, by fracturing subsurface rocks, impacts can extend the depth of the biosphere. This phenomenon would have provided deep refugia for life on the more heavily bombarded early Earth, and it shows that the deeply fractured regions of impact craters are promising targets to study the past and present habitability of Mars.  相似文献   
679.
Abstract Microbialites are biologically mediated carbonate deposits found in diverse environments worldwide. To explore the organisms and processes involved in microbialite formation, this study integrated genomic, lipid, and both organic and inorganic stable isotopic analyses to examine five discrete depth horizons spanning the surface 25?mm of a modern freshwater microbialite from Cuatro Ciénegas, Mexico. Distinct bacterial communities and geochemical signatures were observed in each microbialite layer. Photoautotrophic organisms accounted for approximately 65% of the sequences in the surface community and produced biomass with distinctive lipid biomarker and isotopic (δ(13)C) signatures. This photoautotrophic biomass was efficiently degraded in the deeper layers by heterotrophic organisms, primarily sulfate-reducing proteobacteria. Two spatially distinct zones of carbonate precipitation were observed within the microbialite, with the first zone corresponding to the phototroph-dominated portion of the microbialite and the second zone associated with the presence of sulfate-reducing heterotrophs. The coupling of photoautotrophic production, heterotrophic decomposition, and remineralization of organic matter led to the incorporation of a characteristic biogenic signature into the inorganic CaCO(3) matrix. Overall, spatially resolved multidisciplinary analyses of the microbialite enabled correlations to be made between the distribution of specific organisms, precipitation of carbonate, and preservation of unique lipid and isotopic geochemical signatures. These findings are critical for understanding the formation of modern microbialites and have implications for the interpretation of ancient microbialite records. Key Words: Microbial ecology-Microbe-mineral interactions-Microbial mats-Stromatolites-Genomics. Astrobiology 12, 685-698.  相似文献   
680.
介绍了利用马赫-泽德干涉仪法实现气体-矿物油扩散过程的可视化测量的原理、作用与意义。由于运用马赫-泽德干涉仪法获得的图像干涉条纹数及其图像的形状变化与折射率n直接与液体介质折射率相关,用马赫-泽德干涉仪法可获得十分清晰的影像。在N2,O2-矿物油扩散过程中,干涉条纹式样并未发生显著的紊乱变化,表明N2与O2气体在矿物油中发生扩散后,所引起的矿物油折射率变化过程较为缓慢。在CO2-矿物油扩散过程中,由于溶解的作用,矿物油近表面层中的气体溶解度增加,导致自然对流的出现。通过可视化测量,成功地观测到这一重要实验现象。同时,利用可视化技术,还可很好地判明对流出现的时间,从而确保扩散研究的有效性。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号