首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   0篇
航空   13篇
航天技术   2篇
航天   18篇
  2021年   1篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2013年   1篇
  2012年   3篇
  2011年   2篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2006年   3篇
  2005年   1篇
  2004年   2篇
  2003年   3篇
  1999年   2篇
  1993年   1篇
  1989年   1篇
  1985年   1篇
  1970年   1篇
排序方式: 共有33条查询结果,搜索用时 15 毫秒
31.
Abstract Orbital and in situ analyses establish that aerially extensive deposits of evaporitic sulfates, including gypsum, are present on the surface of Mars. Although comparable gypsiferous sediments on Earth have been largely ignored by paleontologists, we here report the finding of diverse fossil microscopic organisms permineralized in bottom-nucleated gypsums of seven deposits: two from the Permian (~260?Ma) of New Mexico, USA; one from the Miocene (~6?Ma) of Italy; and four from Recent lacustrine and saltern deposits of Australia, Mexico, and Peru. In addition to presenting the first report of the widespread occurrence of microscopic fossils in bottom-nucleated primary gypsum, we show the striking morphological similarity of the majority of the benthic filamentous fossils of these units to the microorganisms of a modern sulfuretum biocoenose. Based on such similarity, in morphology as well as habitat, these findings suggest that anaerobic sulfur-metabolizing microbial assemblages have changed relatively little over hundreds of millions of years. Their discovery as fossilized components of the seven gypsiferous units reported suggests that primary bottom-nucleated gypsum represents a promising target in the search for evidence of past life on Mars. Key Words: Confocal laser scanning microscopy-Gypsum fossils-Mars sample return missions-Raman spectroscopy-Sample Analysis at Mars (SAM) instrument-Sulfuretum. Astrobiology 12, 619-633.  相似文献   
32.
Materials blasted into space from the surface of early Earth may preserve a unique record of our planet's early surface environment. Armstrong et al. (2002) pointed out that such materials, in the form of terrestrial meteorites, may exist on the Moon and be of considerable astrobiological interest if biomarkers from early Earth are preserved within them. Here, we report results obtained via the AUTODYN hydrocode to calculate the peak pressures within terrestrial meteorites on the lunar surface to assess their likelihood of surviving the impact. Our results confirm the order-of-magnitude estimates of Armstrong et al. (2002) that substantial survivability is to be expected, especially in the case of relatively low velocity (ca. 2.5 km/s) or oblique (相似文献   
33.
The Panoramic Camera (PanCam) instrument will provide visible-near IR multispectral imaging of the ExoMars rover's surroundings to identify regions of interest within the nearby terrain. This multispectral capability is dependant upon the 12 preselected "geological" filters that are integrated into two wide-angle cameras. First devised by the Imager for Mars Pathfinder team to detect iron oxides, this baseline filter set has remained largely unchanged for subsequent missions (Mars Exploration Rovers, Beagle 2, Phoenix) despite the advancing knowledge of the mineralogical diversity on Mars. Therefore, the geological filters for the ExoMars PanCam will be redesigned to accommodate the astrobiology focus of ExoMars, where hydrated mineral terrains (evidence of past liquid water) will be priority targets. Here, we conduct an initial investigation into new filter wavelengths for the ExoMars PanCam and present results from tests performed on Mars analog rocks. Two new filter sets were devised: one with filters spaced every 50?nm ("F1-12") and another that utilizes a novel filter selection method based upon hydrated mineral reflectance spectra ("F2-12"). These new filter sets, along with the Beagle 2 filter set (currently the baseline for the ExoMars PanCam), were tested on their ability to identify hydrated minerals and biosignatures present in Mars analog rocks. The filter sets, with varying degrees of ability, detected the spectral features of minerals jarosite, opaline silica, alunite, nontronite, and siderite present in these rock samples. None of the filter sets, however, were able to detect fossilized biomat structures and small (<2?mm) mineralogical heterogeneities present in silica sinters. Both new filter sets outperformed the Beagle 2 filters, with F2-12 detecting the most spectral features produced by hydrated minerals and providing the best discrimination between samples. Future work involving more extensive testing on Mars analog samples that exhibit a wider range of mineralogies would be the next step in carefully evaluating the new filter sets.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号