首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6030篇
  免费   8篇
  国内免费   24篇
航空   2670篇
航天技术   1956篇
综合类   28篇
航天   1408篇
  2021年   47篇
  2019年   33篇
  2018年   213篇
  2017年   168篇
  2016年   136篇
  2015年   52篇
  2014年   151篇
  2013年   180篇
  2012年   178篇
  2011年   283篇
  2010年   240篇
  2009年   336篇
  2008年   359篇
  2007年   240篇
  2006年   129篇
  2005年   179篇
  2004年   169篇
  2003年   176篇
  2002年   127篇
  2001年   184篇
  2000年   84篇
  1999年   113篇
  1998年   134篇
  1997年   86篇
  1996年   100篇
  1995年   149篇
  1994年   131篇
  1993年   81篇
  1992年   100篇
  1991年   40篇
  1990年   47篇
  1989年   106篇
  1988年   36篇
  1987年   43篇
  1986年   43篇
  1985年   176篇
  1984年   120篇
  1983年   98篇
  1982年   97篇
  1981年   177篇
  1980年   55篇
  1979年   39篇
  1978年   37篇
  1977年   42篇
  1976年   31篇
  1975年   43篇
  1973年   29篇
  1972年   31篇
  1970年   29篇
  1969年   31篇
排序方式: 共有6062条查询结果,搜索用时 15 毫秒
181.
This paper presents a computational method for the calculation of probability of detection using measured radar target cross-section data. The described method can also be used for probability of detection calculations when the radar target cross section follows a specified probability density function. Using the computational procedure of the paper, a number of curves are generated which can be used for probability of detection calculations with exponential and Gaussian radar target cross-section distributions. The results obtained using theoretical distributions are compared with the corresponding results using actual target cross-section measurements. The results of computer runs are compared to the corresponding values in the literature where available.  相似文献   
182.
A position fix in a passive mode using satellites usually necessitates an expensive computer or lengthy hand calculation. This is the largest drawback of passive navigation and it would be more desirable if the user could find his position by a mere glance at a chart and table, as one uses Loran. The first step toward this goal is to use a synchronous satellite because it simplifies the problem. The next step is to find the position of the user by a Loran type of chart, which is universal, and correct this apparent position by looking at a special table which is made according to the amount of perturbation of both the satellite and the user's position. An example of the position fix along the route between Yokohama to Hawaii is shown. The concept can be extended to orbiting satellites due to the rules which govern the motion of satellites, if the fix accuracy is in the order of 2 to 5 miles. This method should be more accurate than the common sextant and more practical due to the fact that the satellite can be used at any time and in any weather. As a total system, it will be better than Omega because it could provide additional navigation information such as communication or traffic control by using satellites.  相似文献   
183.
In sensor networks distributed over large areas, communication by means of active transmitters on sensor nodes is inherently energy expensive and poses a significant bottleneck to achieve a long battery life. We propose modulated reradiation of radar illumination as a means to transmit information from a group of sensors to an airborne radar. This puts the communications energy burden on the radar transmitter rather than on the sensor nodes, thus increasing their battery lifetimes. To distinguish the sensor return from the clutter return, the modulation on the sensors is done by switching a nonlinear load on the sensor antenna and processing the harmonic reradiation. We present techniques to transmit information from the sensors, which use stripmap mode synthetic aperture radar (SAR) ideas to decode the information and to simultaneously obtain a geographic map of the sensor locations.  相似文献   
184.
A model for the emission processes causing rapid variability (less than one day) in active galactic nuclei is developed. Relativistic electron beams escape from reconnection sheets in coronae of accretion disks and excite plasma turbulence with a typical frequency , which depends on the electron number densityn (see also the contribution by R. van Oss). The finite lengths of different beams emerging from different reconnection sheets allows that the waves arecoherently scattered to frequencies 2pe. For Lorentz factors 103 and densities typical for disk coronaen106 cm –3 (derived from iron line observations) one easily reaches the optical, frequency range. The time scale of the variability is then caused by the relaxation of the electron beams. Likewise, this model explains the very rapid variability in the X-ray (less than 10 minutes) by changing the parameters slightly. According to this scenario the higher the variable frequency is, the closer to the central black hole it should originate.  相似文献   
185.
A novel VHF localizer system has been designed, built and successfully tested to provide increased reliability and safety of commercial and general aviation air transportation. Additional benefits are more precise tracks for aircraft executing a missed approach, reduced volume of the airspace needed for missed approaches, and reduced sizes of areas affected by noise. The design uses contemporary instrument landing system (ILS) hardware to provide dual independent front and back course directional localizer operation with two carriers in the receiver passband offset 4 kHz from the nominal carrier frequency. An example is given of an application and solution to an ILS problem at Reno, NV. Relevant data are presented  相似文献   
186.
Langmuir waves and turbulence resulting from an electron beam-plasma instability play a fundamental role in the generation of solar radio bursts. We report recent theoretical advances in nonlinear dynamics of Langmuir waves. First, starting from the generalized Zakharov equations, we study the parametric excitation of solar radio bursts at the fundamental plasma frequency driven by a pair of oppositely propagating Langmuir waves with different wave amplitudes. Next, we briefly discuss the emergence of chaos in the Zakharov equations. We point out that chaos can lead to turbulence in the source regions of solar radio emissions. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
187.
A new constant false alarm rate (CFAR) test termed signal-plus-order statistic CFAR (S+OS) using distributed sensors is developed. The sensor modeling assumes that the returns of the test cells of different sensors are all independent and identically distributed In the S+OS scheme, each sensor transmits its test sample and a designated order statistic of its surrounding observations to the fusion center. At the fusion center, the sum of the samples of the test cells is compared with a constant multiplied by a function of the order statistics. For a two-sensor network, the functions considered are the minimum of the order statistics (mOS) and the maximum of the order statistics (MOS). For detecting a Rayleigh fluctuating target in Gaussian noise, closed-form expressions for the false alarm and detection probabilities are obtained. The numerical results indicate that the performance of the MOS detector is very close to that of a centralized OS-CFAR and it performs considerably better than the OS-CFAR detector with the AND or the OR fusion rule. Extension to an N-sensor network is also considered, and general equations for the false alarm probabilities under homogeneous and nonhomogeneous background noise are presented.  相似文献   
188.
Theoretical pressure balance arguments have implied that steady convection is hardly possible in the terrestrial magnetotail and that steady energy input necessarily generates a cyclic loading-unloading sequence, i.e., repetitive substorms. However, observations have revealed that enhanced solar wind energy input to the magnetospheric system may either lead to substorm activity or enhanced but steady convection. This topic is reviewed with emphasis on several recent case studies of the Steady Magnetospheric Convection (SMC) events. In these cases extensive data sets from both satellite and ground-based instruments from various magnetospheric and ionospheric regions were available.Accurate distinction of the spatial and temporal scales of the magnetospheric processes is vital for correct interpretation of the observations during SMC periods. We show that on the large scale, the magnetospheric configuration and plasma convection are stable during SMC events, but that both reveal considerable differences from their quiet-time assemblies. On a shorter time scale, there are numerous transient activations which are similar to those found during substorms, but which presumably originate from a more distant tail reconnection process, and map to the poleward boundary of the auroral oval. The available observations and the unresolved questions are summarized here.The tail magnetic field during SMC events resembles both substorm growth and recovery phases in the neartail and midtail, respectively, but this configuration may remain stable for up to ten hours. Based on observations and model results we discuss how the magnetospheric system avoids pressure balance problems when the plasma convects earthward.Finally, the importance of further coordinated studies of SMC events is emphasized. Such studies may shed more light on the substorm dynamics and help to verify quantitatively the theoretical models of the convecting magnetosphere.  相似文献   
189.
Ulysses plasma observations reveal that the forward shocks that commonly bound the leading edges of corotating interaction regions (CIRs) beyond 2 AU from the Sun at low heliographic latitudes nearly disappeared at a latitude of S26°. On the other hand, the reverse shocks that commonly bound the trailing edges of the CIRs were observed regularly up to S41.5°, but became weaker with increasing latitude. Only three CIR shocks have been observed poleward of S41.5°; all of these were weak reverse shocks. The above effects are a result of the forward waves propagating to lower heliographic latitudes and the reverse waves to higher latitudes with increasing heliocentric distance. These observational results are in excellent agreement with the predictions of a global model of solar wind flows that originate in a simple tilted-dipole geometry back at the Sun.  相似文献   
190.
This instrument is designed to make measurements of the full three-dimensional distribution of suprathermal electrons and ions from solar wind plasma to low energy cosmic rays, with high sensitivity, wide dynamic range, good energy and angular resolution, and high time resolution. The primary scientific goals are to explore the suprathermal particle population between the solar wind and low energy cosmic rays, to study particle accleration and transport and wave-particle interactions, and to monitor particle input to and output from the Earth's magnetosphere.Three arrays, each consisting of a pair of double-ended semi-conductor telescopes each with two or three closely sandwiched passivated ion implanted silicon detectors, measure electrons and ions above 20 keV. One side of each telescope is covered with a thin foil which absorbs ions below 400 keV, while on the other side the incoming <400 keV electrons are swept away by a magnet so electrons and ions are cleanly separated. Higher energy electrons (up to 1 MeV) and ions (up to 11 MeV) are identified by the two double-ended telescopes which have a third detector. The telescopes provide energy resolution of E/E0.3 and angular resolution of 22.5°×36°, and full 4 steradian coverage in one spin (3 s).Top-hat symmetrical spherical section electrostatic analyzers with microchannel plate detectors are used to measure ions and electrons from 3 eV to 30 keV. All these analyzers have either 180° or 360° fields of view in a plane, E/E0.2, and angular resolution varying from 5.6° (near the ecliptic) to 22.5°. Full 4 steradian coverage can be obtained in one-half or one spin. A large and a small geometric factor analyzer measure ions over the wide flux range from quiet-time suprathermal levels to intense solar wind fluxes. Similarly two analyzers are used to cover the wide range of electron fluxes. Moments of the electron and ion distributions are computed on board.In addition, a Fast Particle Correlator combines electron data from the high sensitivity electron analyzer with plasma wave data from the WAVE experiment (Bougeretet al., in this volume) to study wave-particle interactions on fast time scales. The large geometric factor electron analyzer has electrostatic deflectors to steer the field of view and follow the magnetic field to enhance the correlation measurements.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号