首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3746篇
  免费   2篇
  国内免费   19篇
航空   1964篇
航天技术   1054篇
综合类   10篇
航天   739篇
  2019年   18篇
  2018年   167篇
  2017年   150篇
  2016年   53篇
  2015年   29篇
  2014年   49篇
  2013年   60篇
  2012年   92篇
  2011年   215篇
  2010年   186篇
  2009年   234篇
  2008年   250篇
  2007年   202篇
  2006年   67篇
  2005年   122篇
  2004年   94篇
  2003年   80篇
  2002年   51篇
  2001年   79篇
  2000年   49篇
  1999年   63篇
  1998年   80篇
  1997年   49篇
  1996年   61篇
  1995年   78篇
  1994年   76篇
  1993年   53篇
  1992年   61篇
  1991年   31篇
  1990年   30篇
  1989年   72篇
  1988年   26篇
  1987年   29篇
  1986年   30篇
  1985年   119篇
  1984年   68篇
  1983年   57篇
  1982年   58篇
  1981年   103篇
  1980年   34篇
  1979年   26篇
  1978年   24篇
  1977年   28篇
  1976年   18篇
  1975年   31篇
  1974年   19篇
  1973年   25篇
  1972年   20篇
  1970年   24篇
  1969年   26篇
排序方式: 共有3767条查询结果,搜索用时 31 毫秒
421.
The constitutive relations and plastic flow rule are derived from the thermodynamics equations. The known procedures of determining the plastic strain rate value are described. A calculation algorithm is presented that is based on the incremental loading, linearization of the virtual power equation and the projection method. A numerical example is presented.  相似文献   
422.
In this paper, the results of an experimental study concerning average heat transfer in an annular channel with flow swirling by an endless screw and spherical grooves on the convex surface are presented. Also analyzed is the heat and hydraulic efficiency of grooves application under conditions being considered.  相似文献   
423.
Based on radiation hydrodynamics modeling of stellar convection zones, a diffusion scheme has been devised describing the downward penetration of convective motions beyond the Schwarzschild boundary (overshoot) into the radiative interior. This scheme of exponential diffusive overshoot has already been successfully applied to AGB stars. Here we present an application to the Sun in order to determine the time scale and depth extent of this additional mixing, i.e. diffusive overshoot at the base of the convective envelope. We calculated the associated destruction of lithium during the evolution towards and on the main-sequence. We found that the slow-mixing processes induced by the diffusive overshoot may lead to a substantial depletion of lithium during the Sun's main-sequence evolution. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
424.
425.
426.
427.
By combining quiet-region Fe XII coronal images from SOHO/EIT with magnetograms from NSO/Kitt Peak and from SOHO/MDI, we show that the population of network coronal bright points and the magnetic flux content of the network are both markedly greater under the bright half of the large-scale quiet corona than under the dim half. These results (1) support the view that the heating of the entire corona in quiet regions and coronal holes is driven by fine-scale magnetic activity (microflares, explosive events, spicules) seated low in the magnetic network, and (2) suggest that this large-scale modulation of the magnetic flux and coronal heating is a signature of giant convection cells. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
428.
This paper evaluates the performance of multiple target tracking (MTT) algorithms in real-life stressful radar tracking environments. Real closely spaced maneuver radar data, generated by six F-18 fighters and other targets, were collected jointly by the defence departments of Canada and United States to support this practical MTT algorithm evaluation study. A set of performance metrics was defined here to compare the suboptimal nearest neighbor (SNN), global nearest neighbor (GNN), and various variants of the joint probabilistic data association (JPDA) MTT trackers. Results reveal an interesting result that all these MTT algorithms exhibited very close performance. In addition, the weighted sum approach of the PDA/JPDA trackers which are theoretically effective were observed to perform poorly in tracking closely spaced targets. Overall speaking, the GNN filter based on the Munkres algorithm had the best performance in terms of both tracking performance and robustness  相似文献   
429.
The rapid rotation of the gas giant planets, Jupiter and Saturn, leads to the formation of magnetodisc regions in their magnetospheric environments. In these regions, relatively cold plasma is confined towards the equatorial regions, and the magnetic field generated by the azimuthal (ring) current adds to the planetary dipole, forming radially distended field lines near the equatorial plane. The ensuing force balance in the equatorial magnetodisc is strongly influenced by centrifugal stress and by the thermal pressure of hot ion populations, whose thermal energy is large compared to the magnitude of their centrifugal potential energy. The sources of plasma for the Jovian and Kronian magnetospheres are the respective satellites Io (a volcanic moon) and Enceladus (an icy moon). The plasma produced by these sources is globally transported outwards through the respective magnetosphere, and ultimately lost from the system. One of the most studied mechanisms for this transport is flux tube interchange, a plasma instability which displaces mass but does not displace magnetic flux—an important observational constraint for any transport process. Pressure anisotropy is likely to play a role in the loss of plasma from these magnetospheres. This is especially the case for the Jovian system, which can harbour strong parallel pressures at the equatorial segments of rotating, expanding flux tubes, leading to these regions becoming unstable, blowing open and releasing their plasma. Plasma mass loss is also associated with magnetic reconnection events in the magnetotail regions. In this overview, we summarise some important observational and theoretical concepts associated with the production and transport of plasma in giant planet magnetodiscs. We begin by considering aspects of force balance in these systems, and their coupling with the ionospheres of their parent planets. We then describe the role of the interaction between neutral and ionized species, and how it determines the rate at which plasma mass and momentum are added to the magnetodisc. Following this, we describe the observational properties of plasma injections, and the consequent implications for the nature of global plasma transport and magnetodisc stability. The theory of the flux tube interchange instability is reviewed, and the influences of gravity and magnetic curvature on the instability are described. The interaction between simulated interchange plasma structures and Saturn’s moon Titan is discussed, and its relationship to observed periodic phenomena at Saturn is described. Finally, the observation, generation and evolution of plasma waves associated with mass loading in the magnetodisc regions is reviewed.  相似文献   
430.
The General AntiParticle Spectrometer (GAPS) is a novel approach for indirect dark matter searches that exploits cosmic antideuterons. GAPS complements existing and planned direct dark matter searches as well as other indirect techniques, probing a different and unique region of parameter space in a variety of proposed dark matter models. The GAPS method involves capturing antiparticles into a target material with the subsequent formation of an excited exotic atom. The exotic atom decays with the emission of atomic X-rays and pions from the nuclear annihilation, which uniquely identifies the captured antiparticle. This technique has been verified through the accelerator testing at KEK in 2004 and 2005. The prototype flight is scheduled from Hokkaido, Japan in 2011, preparatory for a long duration balloon flight from the Antarctic in 2014.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号