首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5561篇
  免费   7篇
  国内免费   25篇
航空   2563篇
航天技术   2071篇
综合类   191篇
航天   768篇
  2021年   31篇
  2019年   36篇
  2018年   78篇
  2017年   44篇
  2016年   46篇
  2014年   111篇
  2013年   135篇
  2012年   120篇
  2011年   190篇
  2010年   122篇
  2009年   212篇
  2008年   285篇
  2007年   134篇
  2006年   130篇
  2005年   148篇
  2004年   151篇
  2003年   166篇
  2002年   204篇
  2001年   227篇
  2000年   90篇
  1999年   137篇
  1998年   162篇
  1997年   108篇
  1996年   151篇
  1995年   181篇
  1994年   152篇
  1993年   93篇
  1992年   128篇
  1991年   59篇
  1990年   56篇
  1989年   123篇
  1988年   45篇
  1987年   51篇
  1986年   55篇
  1985年   202篇
  1984年   155篇
  1983年   110篇
  1982年   135篇
  1981年   188篇
  1980年   59篇
  1979年   44篇
  1978年   42篇
  1977年   44篇
  1975年   46篇
  1974年   43篇
  1973年   38篇
  1972年   39篇
  1971年   34篇
  1970年   39篇
  1969年   45篇
排序方式: 共有5593条查询结果,搜索用时 234 毫秒
221.
Growth process generate plant form and relate to most physiological functions. The Earth's gravity force affects plant growth in both obvious and subtle ways. It is a major environmental influence on morphology and physiology of plants. Gravity is less important as an agent for plant stress than as an environmental signal to guide growth. The plant's bioaccelerometers are remarkably sensitive, especially in hypogravity. Simulation (clinostat) studies and experiments in satellite laboratories are needed to understand the sensing, transduction, and response characteristics of g related mechanisms. By examining how plants alter growth processes to accomplish developmental or physiological “objectives” we may find it pragmatically desirable to ask ourselves how we might design a plant to achieve such responses to environmental influences. Examples of this design engineering approach for gravity related effects are described as an aid to experimentation.  相似文献   
222.
Doppler and ranging measurements using the radio signal of the GIOTTO spacecraft were taken before, during, and after the encounter with Comet Halley on 1314 March 1986. The spacecraft velocity was found to decrease by a total of 23.3 cm s?1 due to impacting gas and (primarily) dust in the cometary atmosphere. A preliminary dust production rate Qd ? 10 × 103kg s?1 is found to be consistent with this deceleration. Power spectra of the carrier phase fluctuations reveal an increase in level and a flattening of the spectrum just prior to encounter, presumably associated with the enhanced dust impact rate. Finally, simulated Doppler time profiles are computed using the radial dependence of plasma density observed by the GIOTTO in situ investigations. It is shown that the cometary electron content profile would have been clearly seen if a dual-frequency downlink radio configuration had been available at encounter.  相似文献   
223.
Efforts to assess radiation risk in space have been complicated by the considerable unknowns regarding the biological effects of the heavy ion component (HZE particles) of the cosmic rays. The attention has focused primarily on the assignation of a quality factor (Q) which would take into account the greater effectiveness of heavy ions vis-a-vis other forms of ionizing radiation. If however, as the so-called "Microlesion Theory" allows, the passage of HZE particles through living tissue produces unique biological damage, the traditional use of Q becomes meaningless. Therefore, it is critical to determine if microlesions, in fact, do exist. While the concept does not necessarily require detectable morphological damage, "tunnel-lesions" or holes in ocular tissues have been cited as evidence of microlesions. These data, however, are open to reinterpretation. On-going light, scanning and transmission electron microscopic studies of the corneas, lenses and retinas of rat eyes exposed to 450 MeV/amu 56Fe ions thus far have not revealed tunnel-lesion damage. The morphological effects of the heavy ions have been found to be qualitatively similar to the changes following other kinds of ionizing radiation.  相似文献   
224.
During the last few decades various techniques have made it possible to accelerate microparticles (10−6 – 10−15 gr) up to tens of km/sec and macroparticles (1 gr or so) up to 10 km/sec, thus furthering our understanding of many impact related phenomena occurring on the surfaces of celestial bodies.

This review will deal with existing techniques for the acceleration of hypervelocity projectiles. The performance of electrostatic accelerators, electromagnetic rail guns and related systems, plasma drag accelerators, light gas guns and explosive accelerating techniques is reviewed, and the capabilities and limitations of each type are briefly discussed. An attempt is made to assess the future promise of existing techniques and the realism of some current suggestions.  相似文献   

225.
Data from ARCS rocket ion beam injection experiments will be primarily discussed in this paper. There are three results from this series of active experiments that are of particular interest in space plasma physics. These are the transverse acceleration of ambient ions in the large beam volume, the scattering of beam ions near the release payload, and the possible acceleration of electrons very close to the plasma generator which produce intense high frequency waves. The ability of 100 ma ion beam injections into the upper E and F regions of the ionosphere to produce these phenomena appear to be related solely to the process by which the plasma release payload and the ion beam are neutralized. Since the electrons in the plasma release do not convect with the plasma ions, the neutralization of both the payload and beam must be accomplished by large field-aligned currents (milliamperes/square meter) which are very unstable to wave growth of various modes. Future work will concentrate on the wave production and wave-particle interactions that produce the plasma/energetic particle effects discussed in this paper and which have direct application to natural phenomena in the upper ionosphere and magnetosphere.  相似文献   
226.
An analogy is drawn between the current knowledge on terrestrial snow and ice-cap chemistry and the possible composition of snowfall and ice caps of Mars. Terrestrial snowfall reflects the composition of the Earth's atmosphere. Snow cover further interacts with the atmosphere and is the recipient of aerosol and particulate fall-out. The snow is transformed to firn and ice and the chemical signatures become locked into the perennial ice sheets. The chemical profiles of ice thus constitute environmental records of the Earth's past. By considering the present knowledge on the hydrologie cycle of Mars and the chemistry of the atmosphere, a simple analogous model for the chemical profile of the North polar ice cap is proposed. Three major constituents of the ice are discussed: water ice, dust, and occluded air bubbles. The seasonal fluctuations and interannual variability of these components are examined as possible chemical signatures for the dating of ice, elucidating hydrologie processes, and recording long-term climatic change. The model of the north polar cap in summer consists of water-ice fine-dust layers (30–200 m thick) sandwiched between annual dust layers of variable size distribution and thickness (< 1m– > 66 m). The water ice is subjected to metamorphism and grain growth. The interpretation of the physico-chemical profile could lead to increased knowledge on the recent climatic past (1,000–2,000 years), hydrologic reservoirs, and seasonal cycles in the atmospheric dynamics of the planet.  相似文献   
227.
Ample research evidence from space analogs points to the crucial role that teamwork plays in the performance of small groups in isolation and confinement. This paper surveys findings about the impacts of group behavior and social interaction on crew morale, coordination, and productivity. Implications for the organization, selection, and training of crews for extended spaceflight are discussed.  相似文献   
228.
A laboratory method to determine the magnitude and position of radar reflection sources on complex targets is described. In addition the method provides a way to measure the modification of the radar cross section (RCS) due to multipath. The method has application in modeling RCS for radar and electronic countermeasure (ECM) system performance analysis and in the study of the extent to which the signature of the target could be altered. The equipment described, termed MACROSCOPE, was developed for RCS studies by the U.S. Army and is described in limited distribution bution literature. The application to marine targets is new with this paper, as is the technique of measuring the RCS of parts of the target and analytically combining them to represent the whole. An illustration of the need for this type of laboratory equipment was illustrated by the extensive search for full scale data which could be compared to scale model data to validate the technique.  相似文献   
229.
We describe the results obtained with Target of Opportunity observations of the galactic sources SGR 1627–41 and 1E 1547–5408. These two transients show several similarities supporting the interpretation of Anomalous X-ray Pulsars and Soft Gamma-ray Repeaters as a single class of strongly magnetized neutron stars.  相似文献   
230.
Coronal mass ejections (CMEs) are large-scale eruptions of plasma and magnetic field that can produce adverse space weather at Earth and other locations in the Heliosphere. Due to the intrinsic multiscale nature of features in coronagraph images, wavelet and multiscale image processing techniques are well suited to enhancing the visibility of CMEs and suppressing noise. However, wavelets are better suited to identifying point-like features, such as noise or background stars, than to enhancing the visibility of the curved form of a typical CME front. Higher order multiscale techniques, such as ridgelets and curvelets, were therefore explored to characterise the morphology (width, curvature) and kinematics (position, velocity, acceleration) of CMEs. Curvelets in particular were found to be well suited to characterising CME properties in a self-consistent manner. Curvelets are thus likely to be of benefit to autonomous monitoring of CME properties for space weather applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号