首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5154篇
  免费   6篇
  国内免费   28篇
航空   2639篇
航天技术   1863篇
综合类   18篇
航天   668篇
  2019年   29篇
  2018年   52篇
  2016年   28篇
  2014年   89篇
  2013年   111篇
  2012年   102篇
  2011年   162篇
  2010年   119篇
  2009年   187篇
  2008年   262篇
  2007年   124篇
  2006年   109篇
  2005年   135篇
  2004年   134篇
  2003年   166篇
  2002年   92篇
  2001年   159篇
  2000年   89篇
  1999年   133篇
  1998年   156篇
  1997年   105篇
  1996年   141篇
  1995年   177篇
  1994年   155篇
  1993年   106篇
  1992年   148篇
  1991年   69篇
  1990年   62篇
  1989年   141篇
  1988年   55篇
  1987年   51篇
  1986年   59篇
  1985年   188篇
  1984年   143篇
  1983年   108篇
  1982年   124篇
  1981年   176篇
  1980年   60篇
  1979年   62篇
  1978年   50篇
  1977年   40篇
  1976年   37篇
  1975年   64篇
  1974年   40篇
  1973年   40篇
  1972年   48篇
  1971年   30篇
  1970年   32篇
  1969年   39篇
  1967年   31篇
排序方式: 共有5188条查询结果,搜索用时 390 毫秒
411.
For six decades, the global network of neutron monitors (NMs) has provided a continuous stream of very valuable data to the heliophysics community, leading to many insights into the myriad modes of charged particle transport in the tangled magnetic fields that permeate the 3D heliosphere. Earlier, Ahluwalia and Ygbuhay (2012) reported on the drifts in some high latitude NM counting rates in the American zone. We continue our enquiry by testing the stability of the counting rate baselines of some NMs operating in Europe, Africa, and Asia. The data from these detectors have been extremely valuable for the short-term time variation studies, but caution is advised in using the data for long-term studies from NMs with baselines that are drifting for cause(s) unknown.  相似文献   
412.
This paper describes the Magnetic Electron Ion Spectrometer (MagEIS) instruments aboard the RBSP spacecraft from an instrumentation and engineering point of view. There are four magnetic spectrometers aboard each of the two spacecraft, one low-energy unit (20–240 keV), two medium-energy units (80–1200 keV), and a high-energy unit (800–4800 keV). The high unit also contains a proton telescope (55 keV–20 MeV). The magnetic spectrometers focus electrons within a selected energy pass band upon a focal plane of several silicon detectors where pulse-height analysis is used to determine if the energy of the incident electron is appropriate for the electron momentum selected by the magnet. Thus each event is a two-parameter analysis, an approach leading to a greatly reduced background. The physics of these instruments are described in detail followed by the engineering implementation. The data outputs are described, and examples of the calibration results and early flight data presented.  相似文献   
413.
A new technique is developed to compensate multiple-wavelength distortion in airborne antenna arrays. This approach exploits the phase information in microwave reflections from arbitrary terrain. To handle reflections incident over a broad angle, a range-Doppler preprocessor is used in each element channel to resolve wavefronts incident simultaneously from different directions. The phase information for each direction of arrival is compared between elements and processed by optimal estimators to determine the phase corrections needed to compensate the distortion. To develop the estimators, a statistical model of the complex baseband terrain reflections is developed. This is in turn used to generate conditional probability densities involving the range Doppler observations and the parameters to be estimated. These densities are subsequently used to develop minimum variance and maximum likelihood estimators. The new estimators use additional information that has not been exploited by previous techniques and therefore provide enhanced performance  相似文献   
414.
Many bodies in the outer Solar System display the presence of low albedo materials. These materials, evident on the surface of asteroids, comets, Kuiper Belt objects and their intermediate evolutionary step, Centaurs, are related to macromolecular carbon bearing materials such as polycyclic aromatic hydrocarbons and organic materials such as methanol and related light hydrocarbons, embedded in a dark, refractory, photoprocessed matrix. Many planetary rings and satellites around the outer gaseous planets display such component materials. One example, Saturn's largest satellite, Titan, whose atmosphere is comprised of around 90% molecular nitrogen N2 and less than 10% methane CH4, displays this kind of low reflectivity material in its atmospheric haze. These materials were first recorded during the Voyager 1 and 2 flybys of Titan and showed up as an optically thick pinkish orange haze layer. These materials are broadly classified into a chemical group whose laboratory analogs are termed "tholins", after the Greek word for "muddy". Their analogs are produced in the laboratory via the irradiation of gas mixtures and ice mixtures by radiation simulating Solar ultraviolet (UV) photons or keV charged particles simulating particles trapped in Saturn's magnetosphere. Fair analogs of Titan tholin are produced by bombarding a 9:1 mixture of N2:CH4 with charged particles and its match to observations of both the spectrum and scattering properties of the Titan haze is very good over a wide range of wavelengths. In this paper, we describe the historical background of laboratory research on this kind of organic matter and how our laboratory investigations of Titan tholin compare. We comment on the probable existence of polycyclic aromatic hydrocarbons in the Titan Haze and how biological and nonbiological racemic amino acids produced from the acid hydrolysis of Titan tholins make these complex organic compounds prime candidates in the evolution of terrestrial life and extraterrestrial life in our own Solar System and beyond. Finally, we also compare the spectrum and scattering properties of our resulting tholin mixtures with those observed on Centaur 5145 Pholus and the dark hemisphere of Saturn's satellite Iapetus in order to demonstrate the widespread distribution of similar organics throughout the Solar System.  相似文献   
415.
The ultimate goal of a comprehensive life detection strategy is never to miss life when we encounter it. To accomplish this goal, we must define life in universal, that is, non-Earthcentric, measurable terms. Next, we must understand the nature of biosignatures observed from the measured parameters of life. And finally, we must have a clear idea of the end-member states for the search--what does life, past life, or no life look like (in terms of the measured parameters) at multiple spatial and temporal scales? If we can approach these problems both in the laboratory and in the field on Earth, then we have a chance of being able to detect life elsewhere in our solar system. What are the required limits of detection at each of those scales? What spatial, spectral, and temporal resolutions are necessary to detect life? These questions are actively being investigated in our group, and in this report, we present our strategy and approach to non-Earthcentric life detection.  相似文献   
416.
Do large craters on Mars represent sites that contain aqueous and hydrothermal deposits that provide clues to astrobiological processes? Are these materials available for sampling in large craters? Several lines of evidence strongly support the exploration of large impact craters to study deposits important for astrobiology. The great depth of impact craters, up to several kilometers relative to the surrounding terrain, can allow the breaching of local aquifers, providing a source of water for lakes and hydrothermal systems. Craters can also be filled with water from outflow channels and valley networks to form large lakes with accompanying sedimentation. Impact melt and uplifted basement heat sources in craters > 50 km in diameter should be sufficient to drive substantial hydrothermal activity and keep crater lakes from freezing for thousands of years, even under cold climatic conditions. Fluid flow in hydrothermal systems is focused at the edges of large planar impact melt sheets, suggesting that the edge of the melt sheets will have experienced substantial hydrothermal alteration and mineral deposition. Hydrothermal deposits, fine-grained lacustrine sediments, and playa evaporite deposits may preserve evidence for biogeochemical processes that occurred in the aquifers and craters. Therefore, large craters may represent giant Petri dishes for culturing preexisting life on Mars and promoting biogeochemical processes. Landing sites must be identified in craters where access to the buried lacustrine sediments and impact melt deposits is provided by processes such as erosion from outflow channels, faulting, aeolian erosion, or excavation by later superimposed cratering events. Very recent gully formation and small impacts within craters may allow surface sampling of organic materials exposed only recently to the harsh oxidizing surface environment.  相似文献   
417.
Water, vital for life, not only maintains the integrity of structural and metabolic biomolecules, it also transports them in solution or colloidal suspension. Any flow of water through a dormant or fossilized microbial community elutes molecules that are potentially recognizable as biomarkers. We hypothesize that the surface seepage channels emanating from crater walls and cliffs in Mars Orbiter Camera images results from fluvial erosion of the regolith as low-temperature hypersaline brines. We propose that, if such flows passed through extensive subsurface catchments containing buried and fossilized remains of microbial communities from the wet Hesperian period of early Mars (approximately 3.5 Ga ago), they would have eluted and concentrated relict biomolecules and delivered them to the surface. Life-supporting low-temperature hypersaline brines in Antarctic desert habitats provide a terrestrial analog for such a scenario. As in the Antarctic, salts would likely have accumulated in water-filled depressions on Mars by seasonal influx and evaporation. Liquid water in the Antarctic cold desert analogs occurs at -80 degrees C in the interstices of shallow hypersaline soils and at -50 degrees C in salt-saturated ponds. Similarly, hypersaline brines on Mars could have freezing points depressed below -50 degrees C. The presence of hypersaline brines on Mars would have extended the amount of time during which life might have evolved. Phototrophic communities are especially important for the search for life because the distinctive structures and longevity of their pigments make excellent biomarkers. The surface seepage channels are therefore not only of geomorphological significance, but also provide potential repositories for biomolecules that could be accessed by landers.  相似文献   
418.
The Martian polar ice caps are regions of substantial scientific interest, being the most dynamic regions of Mars. They are volatile sinks and thus closely linked to Martian climatic conditions. Because of their scale and the precedent set by the past history of polar exploration on Earth, it is likely that an age of polar exploration will emerge on the surface of Mars after the establishment of a capable support structure at lower latitudes. Expeditions might be launched either from a lower latitude base camp or from a human-tended polar base. Based on previously presented expeditionary routes to the Martian poles, in this paper a "spiral in-spiral out" unsupported transpolar assault on the Martian north geographical pole is used as a Reference expedition to propose new types of equipment for the human polar exploration of Mars. Martian polar "ball" tents and "hover" modifications to the Nansen sledge for sledging on CO2-containing water ice substrates under low atmospheric pressures are suggested as elements for the success of these endeavours.Other challenges faced by these expeditions are quantitatively and qualitatively addressed.  相似文献   
419.
Following an enthusiastic start in 1985, ESA's life support technology development programme was re-assessed in the mid- to late-1990s to reflect the strong reduction in European manned space ambitions which occurred at that time. Further development was essentially restricted to activities that could constitute ISS upgrades or enhancements, or support ISS utilisation/operations, together with a single, limited, activity (MELISSA) aimed at bioregenerative life support, in the continuing hope that there might be "life after Station". The paper describes the current status of these activities and summarises the main priorities for future development that were identified at the April 1999 Workshop on Advanced Life Support.  相似文献   
420.
The Martian surface is exposed to both UVC radiation (<280 nm) and higher doses of UVB (280-315 nm) compared to the surface of the Earth. Terrestrial organisms have not evolved to cope with such high levels of UVC and UVB and thus any attempts to introduce organisms to Mars, particularly in closed-loop life support systems that use ambient sunlight, must address this problem. Here we examine the UV radiation environment of Mars with respect to biological systems. Action spectra and UV surface fluxes are used to estimate the UV stress that both DNA and chloroplasts would experience. From this vantage point it is possible to consider appropriate measures to address the problem of the Martian UV environment for future long term human exploration and settlement strategies. Some prospects for improving the UV tolerance of organisms are also discussed. Existing artificial ecosystems such as Biosphere 2 can provide some insights into design strategies pertinent to high UV environments. Some prospects for improving the UV tolerance of organisms are also discussed. The data also have implications for the establishment of closed-loop ecosystems using natural sunlight on the lunar surface and elsewhere in the Solar System.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号