全文获取类型
收费全文 | 2697篇 |
免费 | 7篇 |
国内免费 | 13篇 |
专业分类
航空 | 1329篇 |
航天技术 | 1058篇 |
综合类 | 10篇 |
航天 | 320篇 |
出版年
2019年 | 18篇 |
2018年 | 24篇 |
2017年 | 18篇 |
2016年 | 18篇 |
2014年 | 50篇 |
2013年 | 58篇 |
2012年 | 54篇 |
2011年 | 85篇 |
2010年 | 60篇 |
2009年 | 106篇 |
2008年 | 159篇 |
2007年 | 66篇 |
2006年 | 68篇 |
2005年 | 69篇 |
2004年 | 80篇 |
2003年 | 81篇 |
2002年 | 53篇 |
2001年 | 76篇 |
2000年 | 50篇 |
1999年 | 64篇 |
1998年 | 80篇 |
1997年 | 49篇 |
1996年 | 61篇 |
1995年 | 78篇 |
1994年 | 76篇 |
1993年 | 50篇 |
1992年 | 61篇 |
1991年 | 31篇 |
1990年 | 30篇 |
1989年 | 70篇 |
1988年 | 26篇 |
1987年 | 28篇 |
1986年 | 31篇 |
1985年 | 120篇 |
1984年 | 68篇 |
1983年 | 58篇 |
1982年 | 58篇 |
1981年 | 103篇 |
1980年 | 34篇 |
1979年 | 26篇 |
1978年 | 24篇 |
1977年 | 28篇 |
1976年 | 18篇 |
1975年 | 31篇 |
1974年 | 19篇 |
1973年 | 25篇 |
1972年 | 20篇 |
1971年 | 16篇 |
1970年 | 24篇 |
1969年 | 26篇 |
排序方式: 共有2717条查询结果,搜索用时 15 毫秒
211.
Lee M.H. Kolodziej W.J. Mohler R.R. 《IEEE transactions on aerospace and electronic systems》1985,(5):594-600
The control of a linear system with random coefficients is studied here. The cost function is of a quadratic form and the random coefficients are assumed to be partially observable by the controller. By means of the stochastic Bellman equation, the optimal control of stochastic dynamic models with partially observable coefficients is derived. The optimal control is shown to be a linear function of the observable states and a nonlinear function of random parameters. The theory is applied to an optimal control design of an aircraft landing in wind gust. 相似文献
212.
213.
Wright C.H.G. Delp E.J. Gallagher N.C. Jr. 《IEEE transactions on aerospace and electronic systems》1990,26(1):122-145
A necessary requirement of a strategic defence system is the detection of incoming nuclear warheads in an environment that may include nuclear detonations of undetected or missed target warheads. A computer model which simulates incoming warheads as distant endoatmospheric targets is described. A model of the electromagnetic noise expected in the nuclear environment is developed. Predicted atmospheric effects are also included. The ability of nonlinear image enhancement algorithms to their ability to suppress the noise and atmospheric effects of the nuclear environment is examined. These algorithms are then tested, using the combined target and noise models, and evaluated in terms of noise removal and their ability to resolve closely spaced targets 相似文献
214.
215.
Active Spacecraft Potential Control Investigation 总被引:1,自引:0,他引:1
K. Torkar R. Nakamura M. Tajmar C. Scharlemann H. Jeszenszky G. Laky G. Fremuth C. P. Escoubet K. Svenes 《Space Science Reviews》2016,199(1-4):515-544
216.
Mahaffy P.R. Donahue T.M. Atreya S.K. Owen T.C. Niemann H.B. 《Space Science Reviews》1998,84(1-2):251-263
The Galileo Probe Mass Spectrometer measurements in the atmosphere of Jupiter give D/H = (2.6 ± 0.7) × 10-5 3He/4He = (1.66 ± 0.05) × 10-4These ratios supercede earlier results by Niemann et al. (1996) and are based on a reevaluation of the instrument response at high count rates and a more detailed study of the contributions of different species to the mass peak at 3 amu. The D/H ratio is consistent with Voyager and ground based data and recent spectroscopic and solar wind (SW) values obtained from the Infrared Spectroscopic Observatory (ISO) and Ulysses. The 3He/4He ratio is higher than that found in meteoritic gases (1.5 ± 0.3) × 10-4. The Galileo result for D/H when compared with that for hydrogen in the local interstellar medium (1.6 ± 0.12) × 10-5 implies a small decrease in D/H in this part of the universe during the past 4.55 billion years. Thus, it tends to support small values of primordial D/H - in the range of several times 10-5 rather than several times 10-4. These results are also quite consistent with no change in (D+3He)/H during the past 4.55 billion years in this part of our galaxy. 相似文献
217.
E. Kendziorra W. Collmar H. Brunner R. Staubert W. Pietsch 《Space Science Reviews》1985,40(3-4):361-365
From a short observation of GX 5-1 with EXOSAT we have derived information on spectral and temporal behaviour in the energy range 1–20 keV. The source was found to be variable on time scales from 10 s to 1 h. Describing the spectrum one is forced to assume at least two spectral components. The best fit is reached using a spectrum composed of two blackbody functions with typical temperatures 1 keV and 2 keV, corresponding to apparent blackbody radii of 43 km and 11 km, respectively (for a distance of 10 kpc). With respect to the hot component there is evidence for variability in temperature as well as in apparent blackbody radius. No periodic variability has been found over the period range 0.25 s to 2000 s. There is no evidence for an iron emission line. 相似文献
218.
The radio observations of Venus are reviewed and compared with theoretical microwave spectra computed for a variety of models of the Venusian environment. The models considered are (a) a CO2-N2 atmosphere, (b) an atmosphere of dust (the aeolosphere model), and (c) a cloud model with various loss mechanisms in the cloud. The effect of polarization on the surface emissivity has been included in all the computations. It is shown how the radio observations place limits upon the acceptable models, for example, the density and size of dust particles required in the aeolosphere model. It is shown how some models place severe restrictions on radar observations at short centimeter wavelengths, thereby emphasizing the importance of such experiments. These same models show that the Mariner II observations can not be interpreted in terms of surface phenomena and provide a new interpretation for the microwave phase effect.This work was supported in part by the U.S. Army, Navy and Air Force under Contract DA36-039-AMC-03200(E); and in part by the National Aeronautics and Space Administration (Grants NsG-250-62 and NsG-419). 相似文献
219.
A. L. Broadfoot B. R. Sandel D. E. Shemansky S. K. Atreya T. M. Donahue H. W. Moos J. L. Bertaux J. E. Blamont J. M. Ajello D. F. Strobel J. C. McConnell A. Dalgarno R. Goody M. B. McElroy Y. L. Yung 《Space Science Reviews》1977,21(2):183-205
The Voyager Ultraviolet Spectrometer (UVS) is an objective grating spectrometer covering the wavelength range of 500–1700 Å with 10 Å resolution. Its primary goal is the determination of the composition and structure of the atmospheres of Jupiter, Saturn, Uranus and several of their satellites. The capability for two very different observational modes have been combined in a single instrument. Observations in the airglow mode measure radiation from the atmosphere due to resonant scattering of the solar flux or energetic particle bombardment, and the occultation mode provides measurements of the atmospheric extinction of solar or stellar radiation as the spacecraft enters the shadow zone behind the target. In addition to the primary goal of the solar system atmospheric measurements, the UVS is expected to make valuable contributions to stellar astronomy at wavelengths below 1000 Å. 相似文献
220.
Deborah L. Domingue Clark R. Chapman Rosemary M. Killen Thomas H. Zurbuchen Jason A. Gilbert Menelaos Sarantos Mehdi Benna James A. Slavin David Schriver Pavel M. Trávníček Thomas M. Orlando Ann L. Sprague David T. Blewett Jeffrey J. Gillis-Davis William C. Feldman David J. Lawrence George C. Ho Denton S. Ebel Larry R. Nittler Faith Vilas Carle M. Pieters Sean C. Solomon Catherine L. Johnson Reka M. Winslow Jörn Helbert Patrick N. Peplowski Shoshana Z. Weider Nelly Mouawad Noam R. Izenberg William E. McClintock 《Space Science Reviews》2014,181(1-4):121-214
Mercury’s regolith, derived from the crustal bedrock, has been altered by a set of space weathering processes. Before we can interpret crustal composition, it is necessary to understand the nature of these surface alterations. The processes that space weather the surface are the same as those that form Mercury’s exosphere (micrometeoroid flux and solar wind interactions) and are moderated by the local space environment and the presence of a global magnetic field. To comprehend how space weathering acts on Mercury’s regolith, an understanding is needed of how contributing processes act as an interactive system. As no direct information (e.g., from returned samples) is available about how the system of space weathering affects Mercury’s regolith, we use as a basis for comparison the current understanding of these same processes on lunar and asteroidal regoliths as well as laboratory simulations. These comparisons suggest that Mercury’s regolith is overturned more frequently (though the characteristic surface time for a grain is unknown even relative to the lunar case), more than an order of magnitude more melt and vapor per unit time and unit area is produced by impact processes than on the Moon (creating a higher glass content via grain coatings and agglutinates), the degree of surface irradiation is comparable to or greater than that on the Moon, and photon irradiation is up to an order of magnitude greater (creating amorphous grain rims, chemically reducing the upper layers of grains to produce nanometer-scale particles of metallic iron, and depleting surface grains in volatile elements and alkali metals). The processes that chemically reduce the surface and produce nanometer-scale particles on Mercury are suggested to be more effective than similar processes on the Moon. Estimated abundances of nanometer-scale particles can account for Mercury’s dark surface relative to that of the Moon without requiring macroscopic grains of opaque minerals. The presence of nanometer-scale particles may also account for Mercury’s relatively featureless visible–near-infrared reflectance spectra. Characteristics of material returned from asteroid 25143 Itokawa demonstrate that this nanometer-scale material need not be pure iron, raising the possibility that the nanometer-scale material on Mercury may have a composition different from iron metal [such as (Fe,Mg)S]. The expected depletion of volatiles and particularly alkali metals from solar-wind interaction processes are inconsistent with the detection of sodium, potassium, and sulfur within the regolith. One plausible explanation invokes a larger fine fraction (grain size <45 μm) and more radiation-damaged grains than in the lunar surface material to create a regolith that is a more efficient reservoir for these volatiles. By this view the volatile elements detected are present not only within the grain structures, but also as adsorbates within the regolith and deposits on the surfaces of the regolith grains. The comparisons with findings from the Moon and asteroids provide a basis for predicting how compositional modifications induced by space weathering have affected Mercury’s surface composition. 相似文献