首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3574篇
  免费   8篇
  国内免费   10篇
航空   1584篇
航天技术   1285篇
综合类   181篇
航天   542篇
  2021年   26篇
  2019年   29篇
  2018年   72篇
  2017年   38篇
  2016年   38篇
  2015年   21篇
  2014年   86篇
  2013年   110篇
  2012年   80篇
  2011年   134篇
  2010年   77篇
  2009年   147篇
  2008年   177篇
  2007年   96篇
  2006年   88篇
  2005年   93篇
  2004年   98篇
  2003年   103篇
  2002年   168篇
  2001年   168篇
  2000年   54篇
  1999年   87篇
  1998年   101篇
  1997年   81篇
  1996年   102篇
  1995年   120篇
  1994年   85篇
  1993年   52篇
  1992年   78篇
  1991年   33篇
  1990年   28篇
  1989年   67篇
  1988年   26篇
  1987年   27篇
  1986年   29篇
  1985年   113篇
  1984年   100篇
  1983年   62篇
  1982年   85篇
  1981年   111篇
  1980年   27篇
  1979年   18篇
  1978年   25篇
  1977年   23篇
  1975年   20篇
  1974年   25篇
  1972年   21篇
  1971年   21篇
  1970年   21篇
  1969年   24篇
排序方式: 共有3592条查询结果,搜索用时 15 毫秒
91.
The complex angle (CA) method for resolving a low angle target from its multipath signal is evaluated in the presence of system noise. It is shown that standard deviation improvements of around 3-to-1 can be achieved at a 20-dB signal-to-noise power ratio relative to a normal monopulse system without the CA. It is also shown that the CA method is unbiased, giving bias improvements of as much as 100 times relative to normal monopulse. Evaluation of the assumptions in the technique shows very little sensitivity to knowledge of the reflecting surface's conductivity or dielectric constant. However, the method is somewhat sensitive to knowledge of surface roughness.  相似文献   
92.
Medium PRF set selection using evolutionary algorithms   总被引:2,自引:0,他引:2  
This paper presents a new and novel method of selecting multiple pulse repetition frequency (PRF) sets for use in medium PRF pulsed-Doppler radars. Evolutionary algorithms are used to minimise the blind areas in the range/Doppler space. The evolutionary algorithm allows optimal solutions to be generated quickly, far faster than with exhaustive searches, and is fully automatic, unlike existing techniques. The evolved solutions compare very favorably against the results of both an exhaustive search and existing published PRF set selection methods. This evolutionary approach to generation of PRF sets is a major advance in medium PRF radar design.  相似文献   
93.
This work is concerned with binary systems that we call ‘moderately close’. These are systems in which the primary (by which we mean the initially more massive star) fills its Roche lobe when it is on the giant branch with a deep convective envelope but before helium ignition (late case B). We find that if the mass ratio q(= M 1/M 2) < q crit = 0.7 when the primary fills its Roche lobe positive feedback will lead to a rapid hydrodynamic phase of mass transfer which will probably lead to common envelope evolution and thence to either coalescence or possibly to a close binary in a planetary nebula. Although most Algols have probably filled their Roche lobes before evolving off the main-sequence we find that some could not have and are therefore ‘moderately close’. Since rapid overflow is unlikely to lead to an Algol-like system there must be some way of avoiding it. The most likely possibility is that the primary can lose sufficient mass to reduce q below q crit before overflow begins. Ordinary mass loss rates are insufficient but evidence that enhanced mass loss does take place is provided by RS CVn systems that have inverted mass ratios but have not yet begun mass transfer. We postulate that the cause of enhanced mass loss lies in the heating of the corona by by magnetic fields maintained by an αω dynamo which is enhanced by tidal effects associated with corotation. In order to model the the effects of enhanced mass loss we ignore the details and adopt an empirical approach calibrating a simple formula with the RS CVn system Z Her. Using further empirical relations (deduced from detailed stellar models) that describe the evolution of red giants we have investigated the effect on a large number of systems of various initial mass ratios and periods. These are notable in that some systems can now enter a much gentler Algol-like overflow phase and others are prevented from transferring mass altogether. We have also investigated the effects of enhanced angular momentum loss induced by corotation of the wind in the strong magnetic fields and consider this in relation to observed period changes. We find that a typical ‘moderately close’ Algol-like system evolves through an RS CVn like system and then possibly a symbiotic state before becoming an Algol and then goes on through a red giant-white dwarf state which may become symbiotic before ending up as a double white dwarf system in either a close or wide orbit depending on how much mass is lost before the secondary fills its Roche lobe.  相似文献   
94.
Electron concentration and Hall mobility have been investigated in pure zinc oxide single crystals, while in the dark and under ultraviolet (UV) excitation. Mode of scattering in ZnO has been determined by studying the temperature dependence of various electrical parameters in the range from -170 to 120°C. It has been observed that the degradation to the crystals by UV irradiation is limited only to the surface layer and shows up only at relatively lower temperatures, which is in contrast to the degradation behavior in thin films and powders.  相似文献   
95.
The magnetospheric imaging instrument (MIMI) is a neutral and charged particle detection system on the Cassini orbiter spacecraft designed to perform both global imaging and in-situ measurements to study the overall configuration and dynamics of Saturn’s magnetosphere and its interactions with the solar wind, Saturn’s atmosphere, Titan, and the icy satellites. The processes responsible for Saturn’s aurora will be investigated; a search will be performed for substorms at Saturn; and the origins of magnetospheric hot plasmas will be determined. Further, the Jovian magnetosphere and Io torus will be imaged during Jupiter flyby. The investigative approach is twofold. (1) Perform remote sensing of the magnetospheric energetic (E > 7 keV) ion plasmas by detecting and imaging charge-exchange neutrals, created when magnetospheric ions capture electrons from ambient neutral gas. Such escaping neutrals were detected by the Voyager l spacecraft outside Saturn’s magnetosphere and can be used like photons to form images of the emitting regions, as has been demonstrated at Earth. (2) Determine through in-situ measurements the 3-D particle distribution functions including ion composition and charge states (E > 3 keV/e). The combination of in-situ measurements with global images, together with analysis and interpretation techniques that include direct “forward modeling’’ and deconvolution by tomography, is expected to yield a global assessment of magnetospheric structure and dynamics, including (a) magnetospheric ring currents and hot plasma populations, (b) magnetic field distortions, (c) electric field configuration, (d) particle injection boundaries associated with magnetic storms and substorms, and (e) the connection of the magnetosphere to ionospheric altitudes. Titan and its torus will stand out in energetic neutral images throughout the Cassini orbit, and thus serve as a continuous remote probe of ion flux variations near 20R S (e.g., magnetopause crossings and substorm plasma injections). The Titan exosphere and its cometary interaction with magnetospheric plasmas will be imaged in detail on each flyby. The three principal sensors of MIMI consists of an ion and neutral camera (INCA), a charge–energy–mass-spectrometer (CHEMS) essentially identical to our instrument flown on the ISTP/Geotail spacecraft, and the low energy magnetospheric measurements system (LEMMS), an advanced design of one of our sensors flown on the Galileo spacecraft. The INCA head is a large geometry factor (G ∼ 2.4 cm2 sr) foil time-of-flight (TOF) camera that separately registers the incident direction of either energetic neutral atoms (ENA) or ion species (≥5 full width half maximum) over the range 7 keV/nuc < E < 3 MeV/nuc. CHEMS uses electrostatic deflection, TOF, and energy measurement to determine ion energy, charge state, mass, and 3-D anisotropy in the range 3 ≤ E ≤ 220 keV/e with good (∼0.05 cm2 sr) sensitivity. LEMMS is a two-ended telescope that measures ions in the range 0.03 ≤ E ≤ 18 MeV and electrons 0.015 ≤ E≤ 0.884 MeV in the forward direction (G ∼ 0.02 cm2 sr), while high energy electrons (0.1–5 MeV) and ions (1.6–160 MeV) are measured from the back direction (G ∼ 0.4 cm2 sr). The latter are relevant to inner magnetosphere studies of diffusion processes and satellite microsignatures as well as cosmic ray albedo neutron decay (CRAND). Our analyses of Voyager energetic neutral particle and Lyman-α measurements show that INCA will provide statistically significant global magnetospheric images from a distance of ∼60 R S every 2–3 h (every ∼10 min from ∼20 R S). Moreover, during Titan flybys, INCA will provide images of the interaction of the Titan exosphere with the Saturn magnetosphere every 1.5 min. Time resolution for charged particle measurements can be < 0.1 s, which is more than adequate for microsignature studies. Data obtained during Venus-2 flyby and Earth swingby in June and August 1999, respectively, and Jupiter flyby in December 2000 to January 2001 show that the instrument is performing well, has made important and heretofore unobtainable measurements in interplanetary space at Jupiter, and will likely obtain high-quality data throughout each orbit of the Cassini mission at Saturn. Sample data from each of the three sensors during the August 18 Earth swingby are shown, including the first ENA image of part of the ring current obtained by an instrument specifically designed for this purpose. Similarily, measurements in cis-Jovian space include the first detailed charge state determination of Iogenic ions and several ENA images of that planet’s magnetosphere.This revised version was published online in July 2005 with a corrected cover date.  相似文献   
96.
The science payload on the Deep Impact mission includes a 1.05–4.8 μm infrared spectrometer with a spectral resolution ranging from R∼200–900. The Deep Impact IR spectrometer was designed to optimize, within engineering and cost constraints, observations of the dust, gas, and nucleus of 9P/Tempel 1. The wavelength range includes absorption and emission features from ices, silicates, organics, and many gases that are known to be, or anticipated to be, present on comets. The expected data will provide measurements at previously unseen spatial resolution before, during, and after our cratering experiment at the comet 9P/Tempel 1. This article explores the unique aspects of the Deep Impact IR spectrometer experiment, presents a range of expectations for spectral data of 9P/Tempel 1, and summarizes the specific science objectives at each phase of the mission.  相似文献   
97.
Geiss  J.  Bühler  F.  Cerutti  H.  Eberhardt  P.  Filleux  Ch.  Meister  J.  Signer  P. 《Space Science Reviews》2004,110(3-4):307-335
Space Science Reviews - The Apollo Solar Wind Composition (SWC) experiment was designed to measure elemental and isotopic abundances of the light noble gases in the solar wind, and to investigate...  相似文献   
98.
Spectral-domain covariance estimation with a priori knowledge   总被引:2,自引:0,他引:2  
A knowledge-aided spectral-domain approach to estimating the interference covariance matrix used in space-time adaptive processing (STAP) is proposed. Prior knowledge of the range-Doppler clutter scene is used to identify geographic regions with homogeneous scattering statistics. Then, minimum-variance spectral estimation is used to arrive at a spectral-domain clutter estimate. Finally, space-time steering vectors are used to transform the spectral-domain estimate into a data-domain estimate of the clutter covariance matrix. The proposed technique is compared with ideal performance and to the fast maximum likelihood technique using simulated results. An investigation of the performance degradation that can occur due to various inaccurate knowledge assumptions is also presented  相似文献   
99.
A new current injected equivalent circuit approach (CIECA) to modeling switching dc-dc converter power stages is developed, which starts with the current injected approach and results in either a set of equations which completely describe input and out-put properties or an equivalent linear circuit model valid at small signal, low frequency levels. This approach to modeling switching dc-dc converter power stages has the merits but not the demerits of both the electronic equivalent circuit state space average approach and the current injected control type approach, namely, 1) the modeling is very clear and is simple whether the converter operates in continuous or discontinuous inductor conduction modes, 2) the modeling results in an equivalent circuit which is very close to the actual converter, and 3) the equivalent circuit can be used directly in the computer for theoretical predictions like SPICE, etc.  相似文献   
100.
The ATS-6 is the most advanced experimental satellite that has evolved from the Application Technology Satellite Program conducted and implemented by NASA Goddard Space Flight Center (NASA/GSFC). This project utilizes a state-of-the-art spacecraft and ground terminal network to perform advance studies and to conduct technological demonstrations in a large number of scientific areas. The design and implementation of this unique spacecraft permitted multiple experimentation simultaneously. The control of the spacecraft is performed at ATS Operational Control Center (ATSOCC) located at NASA/GSFC. Experimentation which was performed covered a wide spectrum of communications, technological, meterorological, and scientific subjects. Three principal ground terminals are utilized to assist the experimenters to acquire data. Data reduction and analysis are performed by the many facilities at NASA/GSFC in support of the experimenters.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号