排序方式: 共有54条查询结果,搜索用时 15 毫秒
21.
G Horneck R Facius M Reichert P Rettberg W Seboldt D Manzey B Comet A Maillet H Preiss L Schauer C G Dussap L Poughon A Belyavin G Reitz C Baumstark-Khan R Gerzer 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2003,31(11):2389-2401
The European Space Agency has recently initiated a study of the human responses, limits and needs with regard to the stress environments of interplanetary and planetary missions. Emphasis has been laid on human health and performance care as well as advanced life support developments including bioregenerative life support systems and environmental monitoring. The overall study goals were as follows: (i) to define reference scenarios for a European participation in human exploration and to estimate their influence on the life sciences and life support requirements; (ii) for selected mission scenarios, to critically assess the limiting factors for human health, wellbeing, and performance and to recommend relevant countermeasures; (iii) for selected mission scenarios, to critically assess the potential of advanced life support developments and to propose a European strategy including terrestrial applications; (iv) to critically assess the feasibility of existing facilities and technologies on ground and in space as testbeds in preparation for human exploratory missions and to develop a test plan for ground and space campaigns; (v) to develop a roadmap for a future European strategy towards human exploratory missions, including preparatory activities and terrestrial applications and benefits. This paper covers the part of the HUMEX study dealing with lunar missions. A lunar base at the south pole where long-time sunlight and potential water ice deposits could be assumed was selected as the Moon reference scenario. The impact on human health, performance and well being has been investigated from the view point of the effects of microgravity (during space travel), reduced gravity (on the Moon) and abrupt gravity changes (during launch and landing), of the effects of cosmic radiation including solar particle events, of psychological issues as well as general health care. Countermeasures as well as necessary research using ground-based test beds and/or the International Space Station have been defined. Likewise advanced life support systems with a high degree of autonomy and regenerative capacity and synergy effects were considered where bioregenerative life support systems and biodiagnostic systems become essential. Finally, a European strategy leading to a potential European participation in future human exploratory missions has been recommended. 相似文献
22.
23.
Sancho LG de la Torre R Horneck G Ascaso C de Los Rios A Pintado A Wierzchos J Schuster M 《Astrobiology》2007,7(3):443-454
This experiment was aimed at establishing, for the first time, the survival capability of lichens exposed to space conditions. In particular, the damaging effect of various wavelengths of extraterrestrial solar UV radiation was studied. The lichens used were the bipolar species Rhizocarpon geographicum and Xanthoria elegans, which were collected above 2000 m in the mountains of central Spain and as endolithic communities inhabiting granites in the Antarctic Dry Valleys. Lichens were exposed to space in the BIOPAN-5 facility of the European Space Agency; BIOPAN-5 is located on the outer shell of the Earth-orbiting FOTON-M2 Russian satellite. The lichen samples were launched from Baikonur by a Soyuz rocket on May 31, 2005, and were returned to Earth after 16 days in space, at which time they were tested for survival. Chlorophyll fluorescence was used for the measurement of photosynthetic parameters. Scanning electron microscopy in back-scattered mode, low temperature scanning electron microscopy, and transmission electron microscopy were used to study the organization and composition of both symbionts. Confocal laser scanning microscopy, in combination with the use of specific fluorescent probes, allowed for the assessment of the physiological state of the cells. All exposed lichens, regardless of the optical filters used, showed nearly the same photosynthetic activity after the flight as measured before the flight. Likewise, the multimicroscopy approach revealed no detectable ultrastructural changes in most of the algal and fungal cells of the lichen thalli, though a greater proportion of cells in the flight samples had compromised membranes, as revealed by the LIVE/DEAD BacLight Bacterial Viability Kit. These findings indicate that most lichenized fungal and algal cells can survive in space after full exposure to massive UV and cosmic radiation, conditions proven to be lethal to bacteria and other microorganisms. The lichen upper cortex seems to provide adequate protection against solar radiation. Moreover, after extreme dehydration induced by high vacuum, the lichens proved to be able to recover, in full, their metabolic activity within 24 hours. 相似文献
24.
Gerda Horneck Angioletta Coradini Gerhard Haerendel May-Britt Kallenrode Paul Kamoun Jean Pierre Swings Alberto Tobias Jean-Jacques Tortora 《Space Policy》2010
As a result of increasing public and political interest in ‘space’ (i.e. solar system) exploration at the global scale, the Space Advisory Group of the European Commission has evaluated the situation in Europe with regard to its potential to participate in this ambitious global enterprise. Aspects of science, technology, environment and safety, society, spin-offs and international cooperation were all considered. The group concluded that Europe possesses sufficient key technologies and scientific expertise to play a major role in international space exploration and has recommended that the EU take a central role to ensure the success of future European space exploration, not only to give a clear political signal for the way forward but also to ensure an appropriate financial framework. In this way Europe would embrace the spirit of the European Space Policy and contribute to the knowledge-based society by investing significantly in space-based science and technology, thereby playing a strong role in international space exploration. 相似文献
25.
N Munakata K Makita D Bolsee D Gillotay G Horneck 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2000,26(12):1995-2003
Environmental UV radiation can be quantified using spore dosimetry, which measures the inactivation of repair-deficient Bacillus subtilis spores dried on a membrane filter. The system exhibits highly selective sensitivity to UV radiation, not being affected by various environmental adversities, such as high and low temperature and humidity. Biologically-effective dose rate and cumulative dose of ambient radiation are measurable under various conditions at various places on the earth, including tropical, temperate, and polar sites. Applications to monitor the exposure at the surface of organisms including humans and plants have also been advanced. 相似文献
26.
G Horneck G Greger P R Sahm 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1986,6(12):85-99
The German Spacelab mission D-l was performed from 30 October through 6 November 1985. Payload operation in orbit was managed by DFVLR for the Federal Ministry of Research and Technology. The scientific program of the mission placed emphasis on microgravity research. In bioscience, the role of gravity in vital functions of biological systems was investigated, such as intracellular and intercellular interactions, developmental processes as well as regulation and adaptation in highly organized systems including human beings. In addition, the biological significance of cosmic radiation or altered zeitgeber within the complex matrix of all relevant spaceflight components were studied. Most of the experiments were accommodated in the following three payload elements: The Bioscience Experiment Package, and the ESA facilities Vestibular Sled and BIORACK. The information gained from the individual experiments will be compiled to help answer pending questions of space bioscience. 相似文献
27.
H Bucker K Baltschukat R Beaujean S L Bonting M Delpoux W Enge R Facius H Francois E H Graul W Heinrich G Horneck A R Kranz R Pfohl G Planel G Portal G Reitz W Ruther M Schafer E Schopper J U Schott 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1984,4(10):83-90
The radiobiological properties of the heavy ions of cosmic radiation were investigated on Spacelab 1 by use of biostacks, monolayers of biological test organisms sandwiched between thin foils of different types of nuclear track detectors. Biostacks were exposed to cosmic radiation at several locations with different shielding environments in the module and on the pallet. Evaluations of the physical and biological components of the experiment to date indicate that in general they survived the spaceflight in good condition. Dosimetric data are presented for the different shielding environments. 相似文献
28.
29.
T.P. Dachev J. Semkova B. Tomov Yu. Matviichuk Pl. Dimitrov R. Koleva St. Malchev G. Reitz G. Horneck G. De Angelis D.-P. Häder V. Petrov V. Shurshakov V. Benghin I. Chernykh S. Drobyshev N.G. Bankov 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2011
Long-term analysis of data from two radiation detection instruments on the International Space Station (ISS) shows that the docking of the Space Shuttle drops down the measured dose rates in the region of the South Atlantic Anomaly (SAA) by a factor of 1.5–3. Measurements either by the R3DE detector, which is outside the ISS at the EuTEF facility on the Columbus module behind a shielding of less than 0.45 g cm−2, and by the three detectors of the Liulin-5 particle telescope, which is inside the Russian PEARS module in the spherical tissue equivalent phantom behind much heavier shielding demonstrate that effect. Simultaneously the estimated averaged incident energies of the incoming protons rise up from about 30 to 45 MeV. The effect is explained by the additional shielding against the SAA 30–150 MeV protons, provided by the 78 tons Shuttle to the instruments inside and outside of the ISS. An additional reason is the ISS attitude change (performed for the Shuttle docking) leading to decreasing of dose rates in two of Liulin-5 detectors because of the East–West proton fluxes asymmetry in SAA. The Galactic Cosmic Rays dose rates are practically not affected. 相似文献
30.
G Horneck 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1998,22(12):1631-1641
Complementary to physical dosimetry, biological dosimetry systems have been developed and applied which weight the different components of environmental radiation according to their biological efficacy. They generally give a record of the accumulated exposure of individuals with high sensitivity and specificity for the toxic agent under consideration. Basically three different types of biological detecting/ monitoring systems are available: (i) intrinsic biological dosimeters that record the individual radiation exposure (humans, plants, animals) in measurable units. For monitoring ionizing radiation exposure, in situ biomarkers for genetic (e.g. chromosomal aberrations in human lymphocytes, germ line minisatellite mutation rates) or metabolic changes in serum, plasma and blood (e.g. serum lipids, lipoproteins, lipid peroxides, melatonin, antibody titer) have been used. (ii) Extrinsic biological dosimeters/indicators that record the accumulated dose in biological model systems. Their application includes long-term monitoring of changes in environmental UV radiation and its biological implications as well as dosimetry of personal UV exposure. (iii) Biological detectors/biosensors for genotoxic substances and agents such as bacterial assays (e.g. Ames test, SOS-type test) that are highly sensitive to genotoxins with high specificity. They may be applicable for different aspects in environmental monitoring including the International Space Station. 相似文献