首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8036篇
  免费   15篇
  国内免费   37篇
航空   3669篇
航天技术   2954篇
综合类   27篇
航天   1438篇
  2021年   66篇
  2019年   52篇
  2018年   149篇
  2017年   108篇
  2016年   89篇
  2014年   166篇
  2013年   228篇
  2012年   211篇
  2011年   318篇
  2010年   217篇
  2009年   338篇
  2008年   421篇
  2007年   236篇
  2006年   185篇
  2005年   233篇
  2004年   236篇
  2003年   272篇
  2002年   172篇
  2001年   260篇
  2000年   163篇
  1999年   187篇
  1998年   222篇
  1997年   168篇
  1996年   188篇
  1995年   248篇
  1994年   260篇
  1993年   135篇
  1992年   187篇
  1991年   76篇
  1990年   82篇
  1989年   170篇
  1988年   69篇
  1987年   63篇
  1986年   88篇
  1985年   245篇
  1984年   208篇
  1983年   163篇
  1982年   179篇
  1981年   260篇
  1980年   69篇
  1979年   55篇
  1978年   66篇
  1977年   54篇
  1976年   45篇
  1975年   54篇
  1974年   56篇
  1973年   47篇
  1972年   58篇
  1971年   41篇
  1970年   47篇
排序方式: 共有8088条查询结果,搜索用时 15 毫秒
141.
Dynamical and thermal variations of the internal structure of the Sun can affect the energy flow and result in variations in irradiance at the surface. Studying variations in the interior is crucial for understanding the mechanisms of the irradiance variations. “Global” helioseismology based on analysis of normal mode frequencies, has helped to reveal radial and latitudinal variations of the solar structure and dynamics associated with the solar cycle in the deep interior. A new technique, - “local-area” helioseismology or heliotomography, offers additional potentially important diagnostics by providing three-dimensional maps of the sound speed and flows in the upper convection zone. These diagnostics are based on inversion of travel times of acoustic waves which propagate between different points on the solar surface through the interior. The most significant variations in the thermodynamic structure found by this method are associated with sunspots and complexes of solar activity. The inversion results provide evidence for areas of higher sound speed beneath sunspot regions located at depths of 4–20 Mm, which may be due to accumulated heat or magnetic field concentrations. However, the physics of these structures is not yet understood. Heliotomography also provides information about large-scale stable longitudinal structures in the solar interior, which can be used in irradiance models. This new diagnostic tool for solar variability is currently under development. It will require both a substantial theoretical and modeling effort and high-resolution data to develop new capabilities for understanding mechanisms of solar variability.  相似文献   
142.
The contribution to total solar irradiance variations by the magnetic field at the solar surface is estimated. Detailed models of the irradiance changes on the basis of magnetograms show that magnetic features at the solar surface account for over 90% of the irradiance variations on a solar rotation time scale and at least 70% on a solar cycle time scale. If the correction to the VIRGO record proposed by Fröhlich & Finsterle (2001) is accepted, then magnetic features at the solar surface are responsible for over 90% of the solar cycle irradiance variations as well.  相似文献   
143.
The SOHO Solar EUV Monitor has been in operation since December 1995 onboard the SOHO spacecraft. This instrument is a highly stable transmission grating solar extreme ultraviolet spectrometer. It has made nearly continuous full disk solar irradiance measurements both within an 8 nm bandpass centered at 30.4 nm and throughout the 0.1 to 50 nm solar flux region since launch. The 30.4 nm flux, the 0.1 to 50 nm flux and the extracted soft X-ray (0.1 to 5 nm) flux are presented and compared with the behavior of solar proxies.  相似文献   
144.
This paper presents the scientific objectives of the Solar Physics and Interferometry Mission (SPI), describes succinctly the model payload and summarizes mission's issues. Novel instrumentation (interferometry) and clever mission design (small platform on low orbit with high telemetry and dedicated smaller platform on hexapod for permanently Sun-centered instruments) allow both spectral imaging and Helioseismology at very high spatial and temporal resolutions. Although not retained by ESA, this mission could become reality through NASA MIDEX and/or CNES PROTEUS opportunities as soon as 2007–2008.  相似文献   
145.
Itapetinga measurements at 48 GHz with the multibeam technique are used to determine the relative position of solar burst centroid of emission with high spatial accuracy and time resolution. For the Great Bursts of October 19,22, 1989, with a large production of relativistic particles, and October 23, it is suggested that, at 48 GHz, the bursts might have originated in more then one source in space and time. Additionally the October 19 and 22 Ground Level Events exhibited very unusual intensity-time profiles including double component structures for the onset phase. The Bern observatory spectral radio emission data show a strong spectral flattening typical for large source inhomogeneties. The interpretation for this is that large solar flares are a superposition of a few strong bursts (separated both in space and time) in the same flaring region.  相似文献   
146.
Time period from October 1996 until January 1998 was checked on high energy resolution DOK2 energetic particle instrument measurements on Interball-1 and Interball-2 for the ion (> 20 keV) dispersive events (EDIS) with the exclusion of Interball-1 orbit parts in the tail. A variety of energy dispersive events, both in ion and electron spectra with different duration is found in the auroral regions, in the outer magnetosphere and near the cusp. While EDIS were observed in all sectors of MLT, the best conditions for their observation were in the afternoon local time. The characteristics of dispersive events observed by DOK2 are consistent with their explanation by the gradient-curvature drift of particles from the injection point(s) in the night local time sector given in Lutsenko at al., 2000a, b.  相似文献   
147.
The Ca K line has been measured regularly nearly every month since 1974 at Kitt Peak. It is well known that the K1 component of the Ca K line is formed in the temperature minimum region (TMR) of the solar atmosphere. Our study of the data of CaII K profiles over two solar cycles indicates that both in full disc integrated spectra and in center disc spectra, the distance between the red K1 and the blue K1 of the profiles and its average intensity show periodic variations. But the variation for the full disc integrated spectra fluctuates in the same way as the sunspot number does, while that for the center disc spectra has a time delay with respect to sunspot number. Non-LTE computations yield a cyclic temperature variation of about 17 K of the TMR in the quiet-Sun atmosphere and a cyclic variation of about 15–20 km in the height position of the TMR.  相似文献   
148.
We use ion distribution measurements with CORALL instrument on-board the INTERBALL/Tail spacecraft to study plasma flows in the mid-tail (−9> X> −27 RE) plasma sheet. Three velocity components computed every 2 minutes exhibit two types of velocity variations: Earthward bursty bulk flows (BBFs) and random flow fluctuations. Their properties are in a good agreement with the observations of the ISEE-2 spacecraft (Borovsky et al., 1997). The INTERBALL/Tail spacecraft configuration favors measurements of Vz component, in contrast to previous experiments in which only Vx and Vy were measured reliably. In the outer part of the plasma sheet Vy and Vz fluctuations were close to each other (variances σ(Vy) and σ(Vz) were about 160 and 110 km/s, respectively), but in the inner part at the dusk flank amplitude of Vy fluctuations increased and was 2 times higher than that of Vz component. This asymmetry of fluctuations should be taken into account during modern theoretical analysis and simulations.  相似文献   
149.
150.
When applied to the Colorado Plateau miner population, the two-stage clonal expansion (TSCE) model of radiation carcinogenesis predicts that radiation-induced promotion dominates radiation-induced initiation. Thus, according to the model, at least for alpha-particle radiation from inhaled radon daughters, lung cancer induction over long periods of protracted irradiation appears to be dominated by radiation-induced modification of the proliferation kinetics of already-initiated cells rather than by direct radiation-induced initiation (i.e., mutation) of normal cells. We explore the possible consequences of this result for radiation exposures to space travelers on long missions. Still unknown is the LET dependence of this effect. Speculations of the cause of this phenomenon include the suggestion that modification of cell kinetics is caused by a "bystander" effect, i.e., the traversal of normal cells by alpha particles, followed by the signaling of these cells to nearby initiated cells which then modify their proliferation kinetics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号