首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3823篇
  免费   3篇
  国内免费   9篇
航空   1719篇
航天技术   1407篇
综合类   10篇
航天   699篇
  2021年   28篇
  2018年   57篇
  2017年   51篇
  2016年   48篇
  2014年   66篇
  2013年   106篇
  2012年   88篇
  2011年   154篇
  2010年   107篇
  2009年   152篇
  2008年   198篇
  2007年   112篇
  2006年   78篇
  2005年   112篇
  2004年   127篇
  2003年   123篇
  2002年   81篇
  2001年   117篇
  2000年   60篇
  1999年   86篇
  1998年   107篇
  1997年   77篇
  1996年   70篇
  1995年   109篇
  1994年   125篇
  1993年   64篇
  1992年   76篇
  1991年   32篇
  1990年   42篇
  1989年   68篇
  1988年   31篇
  1987年   27篇
  1986年   38篇
  1985年   125篇
  1984年   112篇
  1983年   92篇
  1982年   77篇
  1981年   155篇
  1980年   31篇
  1979年   34篇
  1978年   37篇
  1977年   34篇
  1976年   29篇
  1975年   34篇
  1974年   29篇
  1973年   31篇
  1972年   41篇
  1971年   22篇
  1970年   22篇
  1969年   21篇
排序方式: 共有3835条查询结果,搜索用时 13 毫秒
61.
The Photopolarimeter/Radiometer (PPR) is a remote sensing instrument on the Galileo Orbiter designed to measure the degree of linear polarization and the intensity of reflected sunlight in ten spectral channels between 410 and 945 nm to determine the physical properties of Jovian clouds and aerosols, and to characterize the texture and microstructure of satellite surfaces. The PPR also measures thermal radiation in five spectral bands between 15 and 100 m to sense the upper tropospheric temperature structure. Two additional channels which measure spectrally integrated solar and solar plus thermal radiation are used to determine the planetary radiation budget components. The PPR photopolarimetric measurements utilize previously flown technology for high-precision polarimetry using a calcite Wollaston prism and two silicon photodiodes to enable simultaneous detection of the two orthogonal polarization components. The PPR radiometry measurements are made with a lithium tantalate pyroelectric detector utilizing a unique arrangement of radiometric stops and a scene/space chopper blade to enable a warm instrument to sense accurately the much colder scene temperatures.  相似文献   
62.
We present up-to-date evolutionary models of low-mass stars, from M0.6 M down to the hydrogen burning minimum mass, using recent equation of state and synthetic spectra calculations. Comparison is made with observed luminosity function for these objects. We also present implications for the dark-matter distribution in the galactic halo.  相似文献   
63.
SWE,a comprehensive plasma instrument for the WIND spacecraft   总被引:1,自引:0,他引:1  
The Solar Wind Experiment (SWE) on the WIND spacecraft is a comprehensive, integrated set of sensors which is designed to investigate outstanding problems in solar wind physics. It consists of two Faraday cup (FC) sensors; a vector electron and ion spectrometer (VEIS); a strahl sensor, which is especially configured to study the electron strahl close to the magnetic field direction; and an on-board calibration system. The energy/charge range of the Faraday cups is 150 V to 8 kV, and that of the VEIS is 7 V to 24.8 kV. The time resolution depends on the operational mode used, but can be of the order of a few seconds for 3-D measurements. Key parameters which broadly characterize the solar wind positive ion velocity distribution function will be made available rapidly from the GGS Central Data Handling Facility.  相似文献   
64.
The designs of cold space telescopes, cryogenic and radiatively cooled, are similar in most elements and both benefit from orbits distant from the Earth. In particular such orbits allow the anti-sunward side of radiatively-cooled spacecraft to be used to provide large cooling radiators for the individual radiation shields. Designs incorporating these features have predictedT tel near 20 K. The attainability of such temperatures is supported by limited practical experience (IRAS, COBE). Supplementary cooling systems (cryogens, mechanical coolers) can be advantageously combined with radiative cooling in hybrid designs to provide robustness against deterioration and yet lower temperatures for detectors, instruments, and even the whole telescope. The possibility of such major additional gains is illustrated by the Very Cold Telescope option under study forEdison, which should offerT tel5 K for a little extra mechanical cooling capacity.  相似文献   
65.
We are in the process of surveying the linear polarization in luminous, early-type stars. We here report on new observations of the B [e] stars S 18 and R 50, and of the Luminous Blue Variables HR Car, R 143, and HD 160529. Together with previously published data, these observations provide clear evidence for the presence of intrinsic polarization in 1 B[e] star (HD 34664) and in 5 LBVs ( Car, P Cyg, R 127, AG Car, and HR Car). The data indicate that anisotropic stellar winds are a common occurrence among massive stars in these particular evolutionary stages. For such stars, mass-loss rates estimated using the assumption of a spherical, homogeneous and stationary outflow may be in error.  相似文献   
66.
As Viking Landers did not measure rock compositions, Pathfinder (PF) data are the first in this respect. This review gives no proof yet whether the PF rocks are igneous or sedimentary, but for petrogenetic reasons they could be igneous. We suggest a model in which Mars is covered by about 50% basaltic and 50% andesitic igneous rocks. The soils are a mixture of the two with addition of Mg-sulfate and -chloride plus iron compounds possibly derived from the hematite deposits.  相似文献   
67.
Klumpar  D.M.  Möbius  E.  Kistler  L.M.  Popecki  M.  Hertzberg  E.  Crocker  K.  Granoff  M.  Tang  Li  Carlson  C.W.  McFadden  J.  Klecker  B.  Eberl  F.  Künneth  E.  Kästle  H.  Ertl  M.  Peterson  W.K.  Shelly  E.G.  Hovestadt  D. 《Space Science Reviews》2001,98(1-2):197-219
The Time-of-flight Energy Angle Mass Spectrograph (TEAMS) is being flown on the FAST Small Explorer mission to measure the 3-dimensional distribution function of the major ion species present in the lower magnetosphere. The instrument is similar to time-of-flight plasma analyzer systems that have been designed and planned for flight as CODIF (COmposition and DIstribution Function analyzer) on the four European Space Agency Cluster-II spacecraft and, as ESIC (Equator-S Ion Composition instrument) on Equator-S. This instrument allows the 3-dimensional distribution functions of individual ion species to be determined within spin period (2.5 s). Two-dimensional distributions are measured in 80 ms. These capabilities are crucial for the study of selective energization processes in the auroral regions of the magnetosphere. The design, operational characteristics, and test and calibration results for this instrument are presented. The sensor consists of a toroidal top-hat electrostatic analyzer with instantaneous acceptance of ions over 360° in polar angle. After post-acceleration of the incoming ions by up to 25 kV, a time-of-flight mass spectrograph discriminates the individual species. It has been demonstrated through calibration that the instrument can easily separate H+, He2+, He+, O+ and, for energies after post-acceleration of > 20 keV, even O2 + molecules. On-board mass discrimination and the internal accumulation of several distinct data quantities combined with the spacecraft's flexible telemetry formatting allow for instrument data rates from 7.8 kb s–1 to 315 kb s–1 to be telemetered to ground through the FAST centralized Instrument Data Processor.  相似文献   
68.
Hawkins  S.E.  Roelof  E.C.  Decker  R.B.  Ho  G.C.  Lario  D. 《Space Science Reviews》2001,97(1-4):269-272
We have performed a joint survey of anisotropic ≳40 keV electron events from August 1997 to September 2000 using the matched detectors on the Ulysses (ULS)/HI-SCALE and the ACE/EPAM instruments. A computer algorithm selected events with strong, statistically significant pitch-angle anisotropies. Electron pitch-angle distributions at ACE (∼1 AU) are often ‘beams’ that are strongly collimated along the local interplanetary magnetic field (IMF). These flare-associated impulsive injections can display rapid rise times (∼15 min) and slower decays, or more irregular intensity histories. At ULS, the electron intensities are lower and the time histories smoother, but strong anisotropies are still observable, indicating direct, nearly field-aligned propagation outward from the Sun. We focus on four event periods, selected from the survey, during times when the angle between the footpoints of the IMF lines intersecting ACE and ULS is small. These events span three full years and cover a wide range of distances and heliographic latitudes. We found one reasonably good association between impulsive electron events at ACE and ULS, and two events with small field-aligned gradients. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
69.
According to ideal MHD, the magnetopause boundary should split the terrestrial environment in two disconnected domains: outside, the solar wind (including its shocked part, the magnetosheath), and inside, the magnetosphere. This view is at variance with the experimental data, which show that the magnetopause is not tight and that a net transfer of matter exists from the solar wind to the magnetosphere; it implies that the frozen-in condition must break down on the magnetopause, either over the whole boundary or at some points. In the absence of ordinary collisions, only short scale phenomena (temporal and/or spatial) can be invoked to explain this breakdown, and the best candidates in this respect appear to be the ULF magnetic fluctuations which show very strong amplitudes in the vicinity of the magnetopause boundary. It has been shown that these fluctuations are likely to originate in the magnetosheath, probably downstream of the quasi-parallel shock region, and that they can get amplified by a propagation effect when crossing the magnetopause. When studying the propagation across the magnetopause boundary, several effects are to be taken into account simultaneously to get reliable results: the magnetopause density gradient, the temperature effects, and the magnetic field rotation can be introduced while remaining in the framework of ideal MHD. In these conditions, the magnetopause amplification has been interpreted in term of Alfvén and slow resonances occurring in the layer. When, in addition, one takes the ion inertia effects into account, by the way of the Hall-MHD equations, the result appears drastically different: no resonance occurs, but a strong Alfvén wave can be trapped in the boundary between the point where it is converted from the incident wave and the point where it stops propagating back, i.e., the point where k \|=0, which can exist thanks to the magnetic field rotation. This effect can bring about a new interpretation to the magnetopause transfers, since the Hall effect can allow reconnection near this particular point. The plasma transfer through the magnetopause could then be interpreted in terms of a reconnection mechanism directly driven by the magnetosheath turbulence, which is permanent, rather than due to any local instability of the boundary, for instance of the tearing type, which should be subject to an instability threshold and thus, as far as it exists, more sporadic.  相似文献   
70.
The critical flow conditions and structural forms of a two-phase flow that is formed during water efflux from the region of moderate and low pressures into a rarefied medium are analyzed. The difference in the structural forms of a flow realized at the low-head efflux from the structure of a flow occurring in the fluid flow with moderate and high initial pressures is established. The critical pressure differential characterizing the establishment of the maximum flowrate is determined and the decisive influence of turbulence on the vapor phase generation and flow conditions of a two-phase medium is shown.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号