首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5558篇
  免费   13篇
  国内免费   17篇
航空   2617篇
航天技术   1985篇
综合类   19篇
航天   967篇
  2021年   45篇
  2018年   133篇
  2017年   85篇
  2016年   62篇
  2015年   31篇
  2014年   100篇
  2013年   142篇
  2012年   123篇
  2011年   222篇
  2010年   152篇
  2009年   213篇
  2008年   270篇
  2007年   151篇
  2006年   112篇
  2005年   161篇
  2004年   159篇
  2003年   181篇
  2002年   104篇
  2001年   164篇
  2000年   87篇
  1999年   121篇
  1998年   160篇
  1997年   110篇
  1996年   121篇
  1995年   163篇
  1994年   164篇
  1993年   101篇
  1992年   128篇
  1991年   56篇
  1990年   56篇
  1989年   104篇
  1988年   49篇
  1987年   44篇
  1986年   58篇
  1985年   184篇
  1984年   154篇
  1983年   127篇
  1982年   128篇
  1981年   204篇
  1980年   48篇
  1979年   58篇
  1978年   56篇
  1977年   52篇
  1976年   44篇
  1975年   51篇
  1974年   46篇
  1973年   37篇
  1972年   54篇
  1970年   35篇
  1969年   34篇
排序方式: 共有5588条查询结果,搜索用时 15 毫秒
751.
Feonychev  A. I.  Dolgikh  G. A. 《Cosmic Research》2004,42(2):117-128
A numerical investigation of the melt flow and heat and mass transfer is carried out at the crystal growth under zero gravity, when the melt detachment from ampoule walls, crystal vibration, and various magnetic fields are active. Specific features of the melt flow are demonstrated depending on the size of a detachment zone adjacent to the crystallization boundary. The velocity of the averaged flow generated by crystal vibration is determined as a function of the vibration intensity. It is shown that the crystal vibration cannot compensate a thermal capillary flow (caused by detachment of the melt from the ampoule wall) and reduce the macrosegregation of impurities. It is shown that the application of steady and rotating magnetic fields are inefficient for all ampoule methods of crystal growth under microgravity conditions.  相似文献   
752.
The second flight of the International Microgravity Laboratory (IML-2) on Space Shuttle flight STS-65 provided a unique opportunity for the intercomparison of a wide variety of radiation measurement techniques. Although this was not a coordinated or planned campaign, by sheer chance, a number of space radiation experiments from several countries were flown on this mission. There were active radiation measuring instruments from Japan and US, and passive detectors from US, Russia, Japan, and Germany. These detectors were distributed throughout the Space Shuttle volume: payload bay, middeck, flight deck, and Spacelab. STS-65 was launched on July 8, 1994, in a 28.45 degrees x 306 km orbit for a duration of 14 d 17 hr and 55 min. The crew doses varied from 0.935 mGy to 1.235 mGy. A factor of two variation was observed between various passive detectors mounted inside the habitable Shuttle volume. There is reasonable agreement between the galactic cosmic ray dose, dose equivalent and LET spectra measured by the tissue equivalent proportional counter flown in the payload bay with model calculations. There are significant differences in the measurements of LET spectra measured by different groups. The neutron spectrum in the 1-20 MeV region was measured. Using fluence-dose conversion factors, the neutron dose and dose equivalent rates were 11 +/- 2.7 microGy/day and 95 +/- 23.5 microSv/day respectively. The average east-west asymmetry of trapped proton (>3OMeV) and (>60 MeV) dose rate was 3.3 and 1.9 respectively.  相似文献   
753.
Eight evaluation metrics are used to compare and contrast three coordination schemes for a system that continuously plans to control collections of rovers (or spacecraft) using collective mission goals instead of goals or command sequences for each spacecraft. These schemes use a central coordinator to either: 1) micromanage rovers one activity at a time; 2) assign mission goals to rovers; or 3) arbitrate mission goal auctions among rovers. A self-commanding collection of rovers would autonomously coordinate itself to satisfy high-level science and engineering goals in a changing partially understood environment - making the operation of tens or even a hundred spacecraft feasible  相似文献   
754.
During the last decade a large number of radars (~12) have been developed, which have produced substantial quantities of tidally-corrected mean winds data. The distribution of the radars is not global, but many areas are well covered: the Americas with Poker Flat (65°N), Saskatoon (52°N), Durham (43°N), Atlanta (34°N), Puerto Rico (18°N); Europe with Kiruna (68°), Garchy (47°N) and Monpazier (44°N); and Oceania with Christchurch (44°S), Adelaide (35°S), Townsville (20°S), and Kyoto (35°N). Zonal and meridional wind height-time cross-sections from 6080 km (MF/Meteor Radar) to ~110 km have been prepared for the last 5–6 years. They are compared with cross-sections from CIRA-72 for zonal winds, and Groves (1969) for meridional winds.It is shown that while CIRA-72 is still a useful model for many purposes, significant differences exist between it and the new radar data. The latter demonstrate important seasonal, latitudinal, longitudinal and hemispheric variations. The new meridional cross-sections are of great value. The common features with Groves (1969) are the equatorward cells in summer near 85 km; however their strength (~10 ms?1) and size are less. Systematic and somewhat different variations emerge at higher (?52°N) and middle (35–44°) latitudes.  相似文献   
755.
In this work we present preliminary results of nuclear composition measurements on board space station MIR obtained with SILEYE-2 particle telescope. SILEYE-2 was placed on MIR in 1997 and has been working since then. It consists of an array of 6 active silicon strip detectors which allow nuclear and energetic identification of cosmic rays in the energy range between approximately 30 and 200 MeV/n. The device is attached to an helmet and connected to an eye mask which shields the cosmonaut eyes from light and allow studies of the Light Flashes (LF) phenomenon. In addition to the study of the causes of LF, the device is used to perform real time long term radiation environment monitoring inside the MIR, performing measurements in solar quiet and active days.  相似文献   
756.
We present the technical characteristics of a low-cost radio telescope for solar/non solar observations at decimetric (1200–1700 MHz) and centimetric (2700 and 5000 MHz) wavelengths known as Brazilian Decimetric Array (BDA). The technical specifications of the antenna, tracking system, log-periodic feed, preamplifier and the frequency-synthesised receiver with a Single Side Band (SSB) video output of 2.5 MHz are given.  相似文献   
757.
758.
The French earth observation satellite SPOT-2 has served as a testbed for precise orbit determination from DORIS doppler tracking in anticipation of the TOPEX/Poseidon mission. Using the most up-to-data gravity field model, JGM-2, a radial orbit accuracy of about 2–9 cm was achieved, with an rms of fit of the tracking data of about 0.64 mm/s. Furthermore, it was found that the coordinates of the ground stations can be determined with an accuracy of the order of 2–5 cm after removal of common rotations, and translations.

Using a slightly different model for atmospheric drag, but the same gravity model, precise orbits of TOPEX/Poseidon from DORIS tracking data were determined with a radial orbit accuracy of the order of 4–5 cm, which is far within the 13 cm mission requirement. This conclusion is based on the analysis of 1-day overlap of successive 11-day orbits, and the comparisons with orbits computed from satellite laser tracking (SLR) and from the combination of SLR and DORIS tracking. Results indicate a consistency between the different orbits of 1–4 cm, 4–20 cm, and 6–13 cm in the radial, cross-track, and along-track directions, respectively. The residual rms is about 4–5 cm for SLR data and 0.56 mm/s for DORIS tracking. These numbers are roughly twice as large as the system noise levels, reflecting the fact that there are still some modeling errors left.  相似文献   

759.
The LIULIN-3M instrument is a further development of the LIULIN dosimeter-radiometer, used on the MIR spacestation during the 1988-1994 time period. The LIULIN-3M is designed for continuous monitoring of the radiation environment during the BION-12 satellite flight in 1999. A semiconductor detector with 1 mm thickness and cm2 area is contained in the instrument. Pulse high analysis technique is used to determine the energy losses in the detector. The final data from the instrument are the flux and the dose rate for the exposure time and 256 channels of absorbed dose spectra based on the assumption that the particle flux is normal to the detector. The LIULIN-3M instrument was calibrated by proton fluxes with different energies at the Indiana University Cyclotron Facility in June 1997 and had been used for radiation measurements during commercial aircraft flights. The calibration procedure and some flight results are presented in this paper.  相似文献   
760.
Improved spacecraft shield design requires early entry of radiation constraints into the design process to maximize performance and minimize costs. As a result, we have been investigating high-speed computational procedures to allow shield analysis from the preliminary design concepts to the final design. In particular, we will discuss the progress towards a full three-dimensional and computationally efficient deterministic code for which the current HZETRN evaluates the lowest-order asymptotic term. HZETRN is the first deterministic solution to the Boltzmann equation allowing field mapping within the International Space Station (ISS) in tens of minutes using standard finite element method (FEM) geometry common to engineering design practice enabling development of integrated multidisciplinary design optimization methods. A single ray trace in ISS FEM geometry requires 14 ms and severely limits application of Monte Carlo methods to such engineering models. A potential means of improving the Monte Carlo efficiency in coupling to spacecraft geometry is given in terms of re-configurable computing and could be utilized in the final design as verification of the deterministic method optimized design.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号