全文获取类型
收费全文 | 3814篇 |
免费 | 3篇 |
国内免费 | 9篇 |
专业分类
航空 | 1712篇 |
航天技术 | 1407篇 |
综合类 | 10篇 |
航天 | 697篇 |
出版年
2021年 | 28篇 |
2018年 | 56篇 |
2017年 | 51篇 |
2016年 | 47篇 |
2014年 | 65篇 |
2013年 | 105篇 |
2012年 | 88篇 |
2011年 | 153篇 |
2010年 | 107篇 |
2009年 | 150篇 |
2008年 | 197篇 |
2007年 | 111篇 |
2006年 | 78篇 |
2005年 | 112篇 |
2004年 | 127篇 |
2003年 | 123篇 |
2002年 | 81篇 |
2001年 | 117篇 |
2000年 | 60篇 |
1999年 | 86篇 |
1998年 | 107篇 |
1997年 | 77篇 |
1996年 | 70篇 |
1995年 | 109篇 |
1994年 | 125篇 |
1993年 | 64篇 |
1992年 | 76篇 |
1991年 | 32篇 |
1990年 | 42篇 |
1989年 | 68篇 |
1988年 | 31篇 |
1987年 | 27篇 |
1986年 | 38篇 |
1985年 | 125篇 |
1984年 | 112篇 |
1983年 | 92篇 |
1982年 | 77篇 |
1981年 | 155篇 |
1980年 | 31篇 |
1979年 | 34篇 |
1978年 | 37篇 |
1977年 | 34篇 |
1976年 | 29篇 |
1975年 | 34篇 |
1974年 | 29篇 |
1973年 | 31篇 |
1972年 | 41篇 |
1971年 | 22篇 |
1970年 | 22篇 |
1969年 | 21篇 |
排序方式: 共有3826条查询结果,搜索用时 15 毫秒
481.
J W Wilson R K Tripathi G D Qualls F A Cucinotta R E Prael J W Norbury J H Heinbockel J Tweed 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2004,34(6):1319-1327
Improved spacecraft shield design requires early entry of radiation constraints into the design process to maximize performance and minimize costs. As a result, we have been investigating high-speed computational procedures to allow shield analysis from the preliminary design concepts to the final design. In particular, we will discuss the progress towards a full three-dimensional and computationally efficient deterministic code for which the current HZETRN evaluates the lowest-order asymptotic term. HZETRN is the first deterministic solution to the Boltzmann equation allowing field mapping within the International Space Station (ISS) in tens of minutes using standard finite element method (FEM) geometry common to engineering design practice enabling development of integrated multidisciplinary design optimization methods. A single ray trace in ISS FEM geometry requires 14 ms and severely limits application of Monte Carlo methods to such engineering models. A potential means of improving the Monte Carlo efficiency in coupling to spacecraft geometry is given in terms of re-configurable computing and could be utilized in the final design as verification of the deterministic method optimized design. 相似文献
482.
G. V. Kasatkin 《Cosmic Research》2007,45(2):110-125
Attractive forces inside a thin nonuniform meteor ring are found and their features are revealed. 相似文献
483.
M Belli F Ianzini O Sapora M A Tabocchini F Cera R Cherubini A M Haque G Moschini P Tiveron G Simone 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1996,18(1-2):73-82
Low energy protons and other densely ionizing light ions are known to have RBE>1 for cellular end points relevant for stochastic and deterministic effects. The occurrence of a close relationship between them and induction of DNA dsb is still a matter of debate. We studied the production of DNA dsb in V79 cells irradiated with low energy protons having LET values ranging from 11 to 31 keV/micrometer, i.e. in the energy range characteristic of the Bragg peak, using the sedimentation technique. We found that the initial yield of dsb is quite insensitive to proton LET and not significantly higher than that observed with X-rays, in agreement with recent data on V79 cells irradiated with alpha particles of various LET up to 120 keV/micrometer. By contrast, RBE for cell inactivation and for mutation induction rises with the proton LET. In experiments aimed at evaluating the rejoining of dsb after proton irradiation we found that the amount of dsb left unrepaired after 120 min incubation is higher for protons than for sparsely ionizing radiation. These results indicate that dsb are not homogeneous with respect to repair and give support to the hypothesis that increasing LET leads to an increase in the complexity of DNA lesions with a consequent decrease in their repairability. 相似文献
484.
O A Kuznetsov C S Brown H G Levine W C Piastuch M M Sanwo-Lewandowski K H Hasenstein 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2001,28(4):651-658
The effect of spaceflight on starch development in soybean (Glycine max L., BRIC-03) and potato (Solanum tuberosum, Astroculture-05) was compared with ground controls by biophysical and biochemical measurements. Starch grains from plants from both flights were on average 20-50% smaller in diameter than ground controls. The ratio delta X/delta rho (delta X --difference of magnetic susceptibilities, delta rho--difference of densities between starch and water) of starch grains was ca. 15% and 4% higher for space-grown soybean cotyledons and potato tubers, respectively, than in corresponding ground controls. Since the densities of particles were similar for all samples (1.36 to 1.38 g/cm3), the observed difference in delta X/delta rho was due to different magnetic susceptibilities and indicates modified composition of starch grains. In starch preparations from soybean cotyledons (BRIC-03) subjected to controlled enzymatic degradation with alpha-amylase for 24 hours, 77 +/- 6% of the starch from the flight cotyledons was degraded compared to 58 +/- 12% in ground controls. The amylose content in starch was also higher in space-grown tissues. The good correlation between the amylose content and delta X/delta rho suggests, that the magnetic susceptibility of starch grains is related to their amylose content. Since the seedlings from the BRIC-03 experiment showed elevated post-flight ethylene levels, material from another flight experiment (GENEX) which had normal levels of ethylene was examined and showed no difference to ground controls in size distribution, density, delta X/delta rho and amylose content. Therefore the role of ethylene appears to be more important for changes in starch metabolism than microgravity. 相似文献
485.
The handling of containers in terminals requires, in particular in the application of “chaotic storekeeping”, optimal logistic organization-supported by technical and innovative methods. In this manner, it is possible to guarantee that the existing resources are used at maximal cost and time efficiency. The satellite supported DGPS location system represents a substantial contribution to this problem, which determines the container location during the pick-up and set-down phases in the decimeter range and transmits this information via data telemetry link to the central control office. This allows the realization of a fully automatic administration of the container storage facility, as well as integration into the company's data radio link and terminal control 相似文献
486.
R Facius K Scherer G Reitz H Bucker L V Nevzgodina E N Maximova 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1994,14(10):93-103
The potentially specific importance of the heavy ions of the galactic cosmic radiation for radiation protection in manned spaceflight continues to stimulate in situ, i.e., spaceflight experiments to investigate their radiobiological properties. Chromosome aberrations as an expression of a direct assault on the genome are of particular interest in view of cancerogenesis being the primary radiation risk for man in space. In such investigations the establishment of the geometrical correlation between heavy ions' trajectories and the location of radiation sensitive biological substructures is an essential task. The overall qualitative and quantitative precision achieved for the identification of particle trajectories in the order of approximately 10 micrometers as well as the contributing sources of uncertainties are discussed. We describe how this was achieved for seeds of Lactuca sativa as biological test organisms, whose location and orientation had to be derived from contact photographies displaying their outlines and those of the holder plates only. The incidence of chromosome aberrations in cells exposed during the COSMOS 1887 (Biosatellite 8) and the COSMOS 2044 (Biosatellite 9) mission was determined for seeds hit by cosmic heavy ions. In those seeds the incidence of both single and multiple chromosome aberrations was enhanced. The results of the Biosatellite 9 experiment, however, are confounded by spaceflight effects unrelated to the passage of heavy ions. 相似文献
487.
Visibility is important for the pilot controlling an aircraft in flight conditions close to the ground, particularly when landing. Therefore, poor visibility yields a great restriction for aircraft operations. Restrictions exist for landing sites which are equipped with facilities providing a landing approach aid like ILS since a minimum is required for visibility. For landing sites providing no approach aids, restrictions are much more severe. This holds even if aircraft are equipped with modern instrumentation and navigation devices. The natural view of the pilot is dependent on various meteorological conditions like darkness, dust, fog, rain etc. The degradation in view caused by these conditions can be compensated for partially or even completely by technical means providing artificial vision cues. Such technical means may be based on radar or optical sensor information. Concepts which employ these techniques are known as “Synthetic Visual Systems” or “Enhanced Visual Systems,” . The present paper is concerned with computer generated vision as a further technique providing visual cues for the pilot. Computer generated vision may be used in combination with the aforementioned sensor based techniques. Thus, it is possible to compensate for limitations which sensor based visual systems have in providing sufficient visibility range or in generating a normal looking image. In addition, computer generated imagery has the potential providing additional information to the pilot for controlling the flight path or for warning purposes. This potential can yield improved and/or more information as compared with the natural view when looking out of the cockpit window 相似文献
488.
Davis G.W. Hodges G.L. Madeka F.C. 《Aerospace and Electronic Systems Magazine, IEEE》1993,8(11):15-20
The design of a feasible hybrid electric vehicle for use in near-term applications is presented. The challenge involved cost effectiveness, acceleration, range, safety, and emissions, which were incorporated into the vehicle design. The relationship of the design goals was studied, and compromises were made to provide near-optimal system design. This process resulted in the selection and design of the major vehicle components. The design decisions and the actual vehicle components are reviewed 相似文献
489.
V. Formisano V.I. Moroz H. Hirsch P. Orleanski G. Michel J. Lopez-Moreno E. Amata G. Bellucci G. Piccioni G. Chionchio A. Carusi A. Coradini P. Cerroni M.T. Capria F. Capaccioni A. Adriani M. Vitterbini F. Angrilli G. Bianchini B. Saggin S. Fonti E. Bussoletti D. Mancini L. Colangeli A. Grigoriev B. Moshkin V. Gnedykh I.A. Matsygorin D. Patsaev Yu.V. Nikolsky D.V. Titov L.V. Zasova I. Khatuntsev A. Kiselev G. Arnold H. Driesher M.I. Blecka R. Rodrigo J. Rodriguez-Gomez 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1996,17(12):61-64
Thin films containing a mixture of aliphatic (glycine) and aromatic (tryptophan or tyrosine) amino acids were exposed to a vacuum ultraviolet radiation (VUV) with wavelenghts 100–200 nm. Dipeptides (glycyl-tryptophan and glycyl-tyrosine) were synthesized in these conditions. We compared the actions of VUV and γ-radiation. Polymerization is an essential step in prebiological evolution and we have shown that this stage probably occured over an early Solar system history. 相似文献
490.
G D Badhwar P M O'Neill 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1994,14(10):749-757
As the human exploration of space has received new attention in the United States, studies find that exposure to space radiation could adversely impact the mission design. Galactic Cosmic Radiation (GCR), with its very wide range of charges and energies, is particularly important for a mission to Mars, because it imposes a stiff mass penalty for spacecraft shielding. Dose equivalent versus shielding thickness calculations, show a rapid initial drop in exposure with thickness, but an asymptotic behavior at a higher shielding thickness. Uncertainties in the radiobiology are largely unknown. For a fixed radiation risk, this leads to large uncertain ties in shielding thickness for small uncertainties in estimated dose. In this paper we investigate the application of steady-state, spherically-symmetric diffusion-convection theory of solar modulation to individual measurements of differential energy spectra from 1954 to 1989 in order to estimate the diffusion coefficient, kappa (r,t), as a function of time. We have correlated the diffusion coefficient to the Climax neutron monitor rates and show that, if the diffusion coefficient can be separated into independent functions of space and time: kappa (-r,t)=K(t)kappa 0 beta P kappa 1(r), where beta is the particle velocity and P the rigidity, then (i) The time dependent quantity 1/K(t), which is proportional to the deceleration potential, phi(r,t), is linearly related to the Climax neutron monitor counting rate. (ii) The coefficients obtained from hydrogen or helium intensity measurements are the same. (iii) There are different correlation functions for odd and even solar cycles. (iv) The correlation function for the Climax neutron monitor counting rate for given time, t, can be used to estimate mean deceleration parameter phi(t) to within +/- 15% with 90% confidence. We have shown that kappa(r,t) determined from hydrogen and/or helium data, can be used to fit the oxygen and iron differential energy spectra with a root mean square error of about +/- 10%, and essentially independent of the particle charge or energy. We have also examined the ion chamber and 14C measurements which allow the analysis to be extended from the year 1906 to 1990. Using this model we have defined reference GCR spectra at solar minimum and solar maximum. These can be used for space exploration studies and provide a quantitative estimate of the error in dose due to changes in GCR intensities. 相似文献