首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6391篇
  免费   26篇
  国内免费   16篇
航空   3062篇
航天技术   2242篇
综合类   20篇
航天   1109篇
  2021年   50篇
  2019年   41篇
  2018年   101篇
  2017年   79篇
  2016年   76篇
  2015年   38篇
  2014年   118篇
  2013年   157篇
  2012年   156篇
  2011年   236篇
  2010年   167篇
  2009年   245篇
  2008年   320篇
  2007年   171篇
  2006年   138篇
  2005年   184篇
  2004年   177篇
  2003年   202篇
  2002年   131篇
  2001年   215篇
  2000年   114篇
  1999年   147篇
  1998年   182篇
  1997年   125篇
  1996年   145篇
  1995年   203篇
  1994年   201篇
  1993年   114篇
  1992年   145篇
  1991年   61篇
  1990年   68篇
  1989年   140篇
  1988年   65篇
  1987年   57篇
  1986年   66篇
  1985年   200篇
  1984年   182篇
  1983年   161篇
  1982年   140篇
  1981年   211篇
  1980年   56篇
  1979年   55篇
  1978年   58篇
  1977年   56篇
  1976年   47篇
  1975年   63篇
  1974年   50篇
  1973年   45篇
  1972年   68篇
  1971年   39篇
排序方式: 共有6433条查询结果,搜索用时 312 毫秒
681.
A novel thin line detection algorithm for use in low-altitude aerial vehicles is presented. This algorithm is able to detect thin obstacles such as cables, power lines, and wires. The system is intended to be used during urban search and rescue operations, capable of dealing with low-quality images, robust to image clutter, bad weather, and sensor artifacts. The detection process uses motion estimation at the pixel level, combined with edge detection, followed by a windowed Hough transform. The evidence of lines is tracked over time in the resulting parameter spaces using a dynamic line movement model. The algorithm's receiver operating characteristic curve (ROC) is shown, based on a multi-site dataset with 86 videos with 10160 wires spanning in 5576 frames.  相似文献   
682.
Investigation of the infrared characteristics of a rocket nozzle is very important for the study of infrared initiating technology. The Narrow-Band Zone model is developed for that purpose. The spectral transmission and absorption factors are introduced, and the equations between radiative heat flux and the temperature of waill surfaces and gas are developed. The radiative heat transfer in one axisymmetric cylindrical enclosure filled with homogeneous radiative participating medium is computed with the Narrow-Band Zone model and compared with those in the reference documents. The comparison shows good agreement. The radiative heat transfer to the nozzle of one rocket engine is also calculated with the Narrow-Band Zone model, and the outgoing radiative energy flux and energy rate integrated in a mid-wave infrared band 2-6 pm, a long-wave infrared band 8-14 pm and the full wave band are analyzed. The following conclusions can be derived: the spectral radiation from the inlet and outlet of the nozzle show apparent spectral discontinuity, which appears greater in the 2.7-2.95 pm than in the neighboring wave band. The spectral outgoing radiative energy flux of nozzle wail is similar to that of gray body, which decreases with wavelength in 2-14 pm. The outgoing radiative energy flux on the nozzle wall is greater in the cylindrical and contracting section of nozzle, but smaller in the divergent section, which is determined by temperature. The nozzle of the rocket engine radiates most energy in the mid-wave surfaces by absorption. The most important feature of gas radiation is the strong selection of the waveband, so the detailed study of the infrared characteristics of nozzle of the rocket engine should be carried out on narrow-band computation.  相似文献   
683.
The first studies for the mobile mapping and creation of a vehicle for this kind of research was carried out by Canadian Researchers in the 1980s. Since then, these vehicles have been widely employed in several applications (road cadastre maps, terrestrial photogrammihetry, road sign recognition, etc.) for both commercial and research purposes throughout the world. Many GNSSIINS vehicles which can be equipped in different ways with one or more GPS, inertial sensors, and one or several cameras, have been realized. A characteristic shared by most of these devices concerns the high costs of the sensors, of the realization and of the maintenance. For this reason, a GNSSIINS system, that is suitable for any vehicle, made up of low cost devices (two GPS receivers, an INS, and a camera rigidly placed on a metallic bar), has been designed and built by our research group. Two tests run at different velocities have been carried out to evaluate the reliability of the system. After a presentation of the system, the differences that were witnessed during the application of these calibration methods are explained herein.  相似文献   
684.
The historical development of terrestrial atmospheric electricity is described, from its beginnings with the first observations of the potential gradient to the global electric circuit model proposed by C.T.R. Wilson in the early 20th century. The properties of the terrestrial global circuit are summarised. Concepts originally needed to develop the idea of a global circuit are identified as “central tenets”, for example, the importance of radio science in establishing the conducting upper layer. The central tenets are distinguished from additional findings that merely corroborate, or are explained by, the global circuit model. Using this analysis it is possible to specify which observations are preferable for detecting global circuits in extraterrestrial atmospheres. Schumann resonances, the extremely low frequency signals generated by excitation of the surface-ionosphere cavity by electrical discharges, are identified as the most useful single measurement of electrical activity in a planetary atmosphere.  相似文献   
685.
In this paper, prognostic tools are developed to detect the onset of electrical failures in an aircraft power generator, and to predict the generator's remaining useful life (RUL). Focus is on the rotor circuit since failure mode, effects, and criticality analysis (FMECA) studies indicate that it is a high priority candidate for condition monitoring. A signature feature is developed and tested by seeded fault experiments to verify that the initial stages of rotor faults are observable under diverse generator load conditions. A tracking filter is used to assess the damage state and predict generator RUL. This information helps to avoid unexpected failures while reducing the overall life-cycle cost of the system.  相似文献   
686.
687.
Congress authorized NASA's Prometheus Project in February 2003, with the first Prometheus mission slated to explore the icy moons of Jupiter. The project had two major objectives: 1) to develop a nuclear reactor that would provide unprecedented levels of power and show that it could be processed safely and operated reliably in space for long-duration, deep-space exploration; and 2) to explore the three icy moons of Jupiter - Callisto, Ganymede, and Europa - and return science data that would meet the scientific goals as set forth in the Decadal Survey Report of the National Academy of Sciences. Early in project planning, it was determined that the development of the Prometheus nuclear-powered spaceship would be complex and require the intellectual knowledge residing at numerous organizations across the country. In addition, because of the complex nature of the project and the multiple partners, approaches beyond those successfully used to manage a typical JPL project would be needed. This describes the key experiences in managing Prometheus, which should prove useful for future projects of similar scope and magnitude.  相似文献   
688.
The Polar Balloon Atmospheric Composition Experiment (P-BACE) is a new generation of neutral gas mass spectrometer based on the time-of-flight principle. P-BACE is the scientific experiment on the Mars Environment Analog Platform (MEAP) flown successfully on a balloon mission in summer 2008. The MEAP mission was flown with a 334,000 m3 helium balloon in the stratosphere on a semicircular trajectory from northern Sweden around the North Pole to Canada using the summer northern hemispheric wind current. The atmospheric conditions at an atmospheric altitude of 35–40 km are remarkably similar to those on the surface of Mars and thus the balloon mission was an ideal testbed for our mass spectrometer P-BACE. Originally this instrument was designed for in situ measurements of the chemical composition of the Martian atmosphere.P-BACE has a unique mass range from 0 to 1000 amu/q with a mass resolution mm (FWHM) > 1000, and the dynamic range is at least six orders of magnitude. During this experiment, the acquisition of one mass spectrum is a sum of 65,535 single spectra, recorded in a time frame of 66 s.The balloon mission lasted 5 days and had successfully demonstrated the functionality of the P-BACE instrument during flight conditions. We had recorded more than 4500 mass spectra. With little modifications, P-BACE can be used on a planetary mission for Mars, but for example also for Venus or Mercury, if placed on a satellite.  相似文献   
689.
Flywheel technology: past, present, and 21st century projections   总被引:2,自引:0,他引:2  
This paper describes the present status of flywheel energy storage technology, or mechanical batteries, and discusses realistic future projections that are possible based on stronger composite materials and advancing technology. The origins and use of flywheel technology for mechanical energy storage began several hundred years ago and was developed throughout the Industrial Revolution. One of the first “modern” dissertations on the theoretical stress limitations of rotational disks (isotropic only) is the seminal work by A. Stodola whose first translation to English was made in 1917. The next big milestones were during the 1960s and 1970s when NASA sponsored programs proposed energy storage flywheels as possible primary sources for space missions. However, it was not until the 1980's when microelectronics, magnetic bearing systems and high power density motor-generators became enabling technologies. The next decade proved that a mechanical battery could surpass chemical batteries for many applications  相似文献   
690.
In this paper we present an initial survey of results from the plasma wave experiments on the ISEE-1 and -2 spacecraft which are in nearly identical orbits passing through the Earth's magnetosphere at radial distances out to about 22.5R e . Essentially every crossing of the Earth's bow shock can be associated with an intense burst of electrostatic and whistler-mode turbulence at the shock, with substantial wave intensities in both the upstream and downstream regions. Usually the electric and magnetic field spectrum at the shock are quite similar for both spacecraft, although small differences in the detailed structure are sometimes apparent upstream and downstream of the shock, probably due to changes in the motion of the shock or propagation effects. Upstream of the shock emissions are often observed at both the fundamental, f - p , and second harmonic, 2f p - , of the electron plasma frequency. In the magnetosphere high resolution spectrograms of the electric field show an extremely complex distribution of plasma and radio emissions, with numerous resonance and cutoff effects. Electron density profiles can be obtained from emissions near the local electron plasma frequency. Comparisons of high resolution spectrograms of whistler-mode emissions such as chorus detected by the two spacecraft usually show a good overall similarity but marked differences in detailed structure on time scales less than one minute. Other types of locally generated waves, such as the (n+1/2)f - g electron cyclotron waves, show a better correspondence between the two spacecraft. High resolution spectrograms of kilometric radio emissions are also presented which show an extremely complex frequency-time structure with many closely spaced narrow-band emissions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号